Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fish Shellfish Immunol ; 128: 123-135, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35921936

ABSTRACT

Acute ammonia toxicity suppresses the immune function and enhances the inflammatory pathways in Nile tilapia. The aim of this study was to compare the effect of Bacillus strains probiotic mixture (BS) or Yucca shidigera liquid extract (YSE) alone or their combination in water treatment and in reliving toxicity of an acute ammonia exposure in Nile tilapia through the assessment of fish immune response, inflammatory pathway, oxidative stress response with respect to the histopathological changes, gene expression, enzymes levels and phagocytosis. Five groups were used; the 1st and 2nd groups fed the basal diet; the 3rd group fed basal diet with BS in water, 4th group fed basal diet and supplemented with YSE in water and 5th group received a combination of BS and YSE. After two weeks of treatments, the 2nd, 3rd, 4th, and the 5th groups were exposed to acute ammonia challenge for 72 h. Fish exposed to ammonia displayed significant decreases in RBCs, Hb, PCV, WBCs, phagocytic activity (PA) and index (PI), lysozyme activities and serum antioxidant enzymes (glutathione peroxidase (GPX) and catalase (CAT)). Also, a significant increase in Malondialdehyde (MDA), degenerative changes in the gills, hepatopancrease and spleen associated with an elevated un-ionized ammonia level. A significant restoration of the hematological parameters was observed with the use of BS, YSE or their combination. Additionally, they improved the innate immunity, antioxidant responses, and histopathological changes. At transcriptomic level, ammonia toxicity significantly lowered the mRNA transcription levels of Nuclear erythroid 2-related factor 2 (Nrf2), quinone oxidoreductase 1 (NQO-1), Heme oxygenase 1 (HO-1) and Heat shock proteins (HSP70). While nuclear factor kappa ß (NFкß), Tumor necrosis factor α (TNF-α), Interleukin 1ß (IL-1ß), and Interleukin 8 (IL8), transcription levels were increased. Interestingly, BS and YSE and their combination significantly increased the expression of these genes with the highest levels reported with BS and YSE combination. We observed that, the most pronounced restoration of some important inflammatory and immune related genes close to the control level was observed when BS-YSE mix was used. Furthermore, a restored water pH, and a maintained ammonia level to the control level were observed in this group. Otherwise, equal effects for the three treatments were observed on the assessed parameters. We recommend the used of BS-YSE mix for water ammonia treatment and relieving ammonia toxicity in fish.


Subject(s)
Bacillus , Cichlids , Yucca , Ammonia/metabolism , Animal Feed/analysis , Animals , Antioxidants/metabolism , Bacillus/genetics , Catalase/metabolism , Glutathione Peroxidase/metabolism , Heat-Shock Proteins/metabolism , Heme Oxygenase-1/metabolism , Immunity, Innate , Interleukin-1beta/metabolism , Interleukin-8 , Malondialdehyde/metabolism , Muramidase/metabolism , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Quinones/metabolism , Quinones/pharmacology , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism , Water Quality
2.
Biol Trace Elem Res ; 200(9): 4126-4141, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35040035

ABSTRACT

Zinc is an essential element for metabolism of Nile tilapia (Oreochromis niloticus). Nanomaterials have important benefits in aquaculture. The present study evaluated the effects of green-synthesized zinc oxide nanoparticles (ZnO-NPs) using Ulva fasciata extract as an anti-fungal agent against Candida albicans (C. albicans) in vitro and in vivo in O. niloticus. A total of 252 apparent healthy O. niloticus (20 ± 0.457 g/fish) were randomly allocated into six groups: The 1st group fed on basal diet contaminated with C. albicans 15 × l06 CFU/g diet, the 2nd group fed basal diet only, the 3rd and 5th groups fed the basal diet supplemented with 40 or 60 mg/kg ZnO-NPs, respectively, and the 4th and 6th groups fed the basal diet contaminated with C. albicans 15 × l06 CFU/g and concomitantly supplemented with 40 or 60 mg/kg ZnO-NPs, respectively. The experiment lasted for 8 weeks. The phyco-synthesized ZnO-NPs were characterized by XRD, UV-V, FTIR, TEM, and zeta potential. The anti-fungal activities of ZnO-NPs and the morphological changes to C. albicans cell due to ZnO-NPs were detected. The results revealed that dietary supplementation with the green-synthesized ZnO-NPs significantly improved the growth performance, survival, serum lysozyme activity, phagocytic activity, phagocytic index, respiratory burst activity, expression of immune-related genes (IL-1ß, TGF, TNF-α), digestive enzyme activity, and histopathological finding in C. albicans-infected group, with a relative superiority to 40 mg/kg feed ZnO-NPs. It could be concluded that supplementing diets with 40 mg/kg of phyco-synthesized ZnO-NPs could be considered a better choice for controlling candidiasis in Nile tilapia.


Subject(s)
Candidiasis , Cichlids , Nanoparticles , Zinc Oxide , Animal Feed/analysis , Animals , Candidiasis/drug therapy , Candidiasis/prevention & control , Diet , Dietary Supplements , Disease Resistance , Zinc Oxide/pharmacology
3.
Biol Trace Elem Res ; 200(1): 364-374, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33569732

ABSTRACT

This study was aimed to investigate the synergistic effects of selenium (Se-NP) and zinc oxide (ZnO-NP) nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Monosex Nile tilapia (12.50 ± 1.03 g, N= 180) were randomly allocated into 4 groups in triplicates. Fish were fed diet supplemented with 0 Se-NP and Zn-NP (control group, CG), while fish in the other experimental groups were fed diet supplemented with 1 mg/kg diet Se-NP (Se-NP group), 10 mg/kg diet ZnO-NP (Zn-NP group), and a mixture of 1 and 10 mg/kg diet Se-NP and Zn-NP, respectively (Se/Zn-NP group) for 60 days. Fish fed diet containing Se-NP, Zn-NP, and Se/Zn-NP showed higher final body weight, weight gain, weight gain rate, specific growth rate, and lower feed conversion ratio with respect to CG (P<0.05) with the highest being in fish fed with Se/Zn-NP. Fish fed with Se/Zn-NP showed higher hemoglobin, red blood cells, and globulin (P<0.05). The highest phagocytic activity, phagocytic index, lysozyme activity, and immunoglobulin M was recorded in fish that received Se/Zn-NP followed by Se-NP, Zn-NP, and the lowest in CG (P<0.05). Fish that received diet supplemented with Se-NP, Zn-NP, and Se/Zn-NP significantly (P<0.05) increased superoxide dismutase and catalase while reduced malonaldehyde activity compared to CG. Intestinal morphometry revealed significantly (P<0.05) increased villi length and goblet cells number in fish fed with Se-NP and/or Zn-NP. In conclusion, dietary supplementation of Nile tilapia with Se-NP and Zn-NP induces synergistic effects that improve growth performance, blood health, and intestinal histomorphology.


Subject(s)
Cichlids , Nanoparticles , Selenium , Zinc Oxide , Animal Feed/analysis , Animals , Diet , Dietary Supplements , Oxidative Stress , Selenium/pharmacology , Zinc Oxide/pharmacology
4.
Mar Drugs ; 19(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806929

ABSTRACT

This study was aimed to evaluate the efficiency of Sargassumpolycystum and nucleotides- supplemented diets to improve immune response and cold-tolerance of juvenile Litopenaeus vannamei. Four treatments were evaluated: T1, the control, shrimp received only a basal diet; T2, a basal diet with 500 ppm nucleotides; T3, a basal diet with 500 ppm S.polycystum powdered; T4, a basal diet with 500 ppm nucleotides and 500 ppm S.polycystum powdered. Shrimp were fed experimental diets for 56 days. Results revealed shrimp fed T4 diet exhibited the best significant improvement in water quality, survival, growth, and feed utilization indices followed by T2, and T3, while T1 showed the worst values. Additionally, nonspecific immune responses (phagocytosis (%), lysozyme, phenoloxidase, super oxide dismutase (SOD) activity, total nitric oxide) were improved with 1.7-3.2-fold in T4 higher than T1. Histomorphology of hepatopancreas in T4 showed the most increased activation of the hepatic glandular duct system compared with the other treatments. Moreover, nucleotides/seaweed-supplemented diets upregulated relative expression of cMnSOD, Penaeidin4, and heat shock protein70 (HSP70) genes, while translationally controlled tumor protein (TCTP) was downregulated. In conclusion, the synergistic effects of both S. polycystum and nucleotides have many advantages as a growth promoter, immunostimulant, antimicrobial, and cold-tolerant stimulant to L. vannamei.


Subject(s)
Cold Temperature , Dietary Supplements , Nucleotides/administration & dosage , Penaeidae/physiology , Sargassum , Seasons , Seaweed , Shellfish , Acclimatization , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Aquaculture , Gene Expression Regulation , Nutritional Status , Nutritive Value , Penaeidae/genetics , Penaeidae/growth & development , Time Factors
5.
Biol Trace Elem Res ; 198(2): 661-668, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32157633

ABSTRACT

The present investigation aimed to evaluate the influence of selenium nanoparticles (Se-NPs) or/and spirulina (SP) on the growth, immunity, and oxidation resistance of Nile tilapia. Four groups of fish fed diets with Se-NPs or/and SP at 0 g (control), 1 g SP/kg diet (SP), 1 mg Se-NPs/kg diet (Se-NPs), and 1 g SP + 1 mg Se-NPs/kg diet (SP/Se-NPs) for 60 days. Fish fed Se-NPs or/and SP displayed significantly improved weight gain (WG) and decreased feed conversion ratio (P < 0.05). The highest WG has observed in fish fed both Se-NPs and SP, while the specific growth rate was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Blood albumin was increased significantly with Se-NPs with regard to the control (P < 0.05), while there were no significant differences between fish fed Se-NPs or/and SP. Blood total protein also was improved by feeding Se-NPs only or both Se-NPs and SP (P < 0.05). Further, blood immunoglobulin M was increased by feeding both Se-NPs and SP (P < 0.05), while the differences were insignificantly differing with fish fed only Se-NPs (P > 0.05). The transcription of liver superoxide dismutase (SOD) and tumor necrosis factor-alpha (TNF-α) genes was upregulated significantly by Se-NPs or/and SP (P < 0.05). Interestingly, TNF-α was significantly upregulated by SP when compared to those fed Se-NPs only or both Se-NPs and SP. However, heat shock protein 70 (HSP70) gene transcription was downregulated by Se-NPs or/and SP (P < 0.05). Based on the measured parameters, the mixture of both Se-NPs and SP is highly recommended for the welfare of Nile tilapia.


Subject(s)
Cichlids , Nanoparticles , Selenium , Spirulina , Animal Feed/analysis , Animals , Cichlids/genetics , Diet/veterinary , Dietary Supplements , Heat-Shock Proteins/genetics , Selenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL