Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Endocrinology ; 152(9): 3492-503, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21733827

ABSTRACT

Apelin is a bioactive peptide identified as the endogenous ligand of the human orphan G protein-coupled receptor APJ in 1998. The present data show that apelin modulates the activity of magnocellular and parvocellular oxytocin (OXY) neurons in the lactating rat. A combination of in situ hybridization and immunohistochemistry demonstrated the presence of apelin receptor mRNA in hypothalamic OXY neurons. Double immunofluorescence labeling then revealed the colocalization of apelin with OXY in about 20% of the hypothalamic OXY-positive neurons. Intracerebroventricular apelin administration inhibited the activity of magnocellular and parvocellular OXY neurons, as shown by measuring the c-fos expression in OXY neurons or by direct electrophysiological measurements of the electrical activity of these neurons. This effect was correlated with a decrease in the amount of milk ejected. Thus, apelin inhibits the activity of OXY neurons through a direct action on apelin receptors expressed by these neurons in an autocrine and paracrine manner. In conclusion, these findings highlight the inhibitory role of apelin as an autocrine/paracrine peptide acting on OXY neurons during breastfeeding.


Subject(s)
Hypothalamus/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lactation/metabolism , Neurons/metabolism , Oxytocin/metabolism , Animals , Apelin , Female , Hypothalamus/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/pharmacology , Neurons/drug effects , Rats , Rats, Wistar
2.
Prog Brain Res ; 170: 559-70, 2008.
Article in English | MEDLINE | ID: mdl-18655909

ABSTRACT

This review concentrates on the characteristics and functionality of endocrine neurons in the hypothalamo-neurohypophysial system, coexpressing two peptides, vasopressin and apelin. Vasopressin is synthesized in the soma of magnocellular neurons, then packaged in granules with its respective receptors. In these neurons, apelin is generated from a larger precursor proapelin and is detected in vesicles, some of them colocalize with vasopressin, for others there is a marked segregation of apelin and vasopressin immunoreactivity along the hypothalamo-hypophyseal axons. Furthermore, apelin receptors, like V1a-type and V1b-type vasopressin receptors, are synthesized by magnocellular vasopressin neurons. In lactating rodents, apelin given intracerebroventricularly inhibited the phasic electrical activity of vasopressin neurons, reduced plasma vasopressin levels and increased aqueous diuresis, showing that apelin acts as a potent diuretic neuropeptide, counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Moreover, in response to potent physiological stimuli known to evoke increased phasic activity of vasopressin neurons (hyper-osmolarity like during dehydration), both the soma dendrites and neurohypophysial terminals loose their dense staining quality, and vasopressin is released by (i) dendrites in the extracellular space to optimize the characteristic phasic activity necessary to a sustained release of vasopressin and (ii) by terminals in blood circulation where vasopressin then ensures its main endocrine actions at kidney level (antidiuretic effect). Conversely, apelin accumulates in these neurons rather than being released into the bloodstream and probably into the nuclei. Thus, decreases in the local supply of apelin to magnocellular vasopressin cell bodies may facilitate the expression by vasopressin neurons of an optimized phasic activity, by decreasing the inhibitory actions of apelin on these neurons. Antagonistic regulation of apelin and vasopressin has a biological purpose, making it possible to maintain the water balance of the organism by preventing additional water loss via kidneys. This reveals a new physiological concept of dual and opposite functional potentiality for endocrine neurons coexpressing different neuropeptides in separate vesicles: depending on the degree of their electrical activation/inhibition, neurons release selectively the very coexpressed peptides that will ensure its accurate endocrine functions in perfect accordance with the hormonal demand.


Subject(s)
Body Fluids/physiology , Homeostasis/physiology , Hypothalamus/physiology , Intercellular Signaling Peptides and Proteins/physiology , Neuropeptides/physiology , Vasopressins/physiology , Adipokines , Amino Acid Sequence , Animals , Apelin , Apelin Receptors , Blood Pressure/physiology , Carrier Proteins/physiology , Conserved Sequence , Humans , Ligands , Mice , Molecular Sequence Data , Rats , Receptors, G-Protein-Coupled/physiology , Sequence Homology, Amino Acid
3.
J Neurosci ; 25(9): 2267-76, 2005 Mar 02.
Article in English | MEDLINE | ID: mdl-15745952

ABSTRACT

In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Mechanoreceptors/physiology , Neural Inhibition/drug effects , Neurons/drug effects , Receptors, Glycine/physiology , Supraoptic Nucleus/cytology , Action Potentials/drug effects , Action Potentials/physiology , Androstadienes/pharmacology , Animals , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Drug Interactions , Electric Stimulation/methods , Enzyme Inhibitors/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Glycine Agents/pharmacology , Immunohistochemistry/methods , In Vitro Techniques , Insulin-Like Growth Factor I/metabolism , Male , Neurons/metabolism , Oxytocin/metabolism , Patch-Clamp Techniques/methods , Rats , Receptor, IGF Type 1/metabolism , Strychnine/pharmacology , Taurine/metabolism , Taurine/pharmacology , Tritium/metabolism , Vasopressins/metabolism , Wortmannin
4.
Proc Natl Acad Sci U S A ; 101(28): 10464-9, 2004 Jul 13.
Article in English | MEDLINE | ID: mdl-15231996

ABSTRACT

Apelin, a recently isolated neuropeptide that is expressed in the supraoptic and the paraventricular nuclei, acts on specific receptors located on vasopressinergic neurons. The increased phasic pattern of these neurons facilitates sustained antidiuresis during dehydration or lactation. Here, we investigated whether apelin interacts with arginine vasopressin (AVP) to maintain body fluid homeostasis. We first characterized the predominant molecular forms of endogenous hypothalamic and plasma apelin as corresponding to apelin 13 and, to a lesser extent, to apelin 17. We then demonstrated that, in lactating rats, apelin was colocalized with AVP in supraoptic nucleus magnocellular neurons and given intracerebroventricularly inhibited the phasic electrical activity of AVP neurons. In lactating mice, intracerebroventricular administration of apelin 17 reduced plasma AVP levels and increased diuresis. Moreover, water deprivation, which increases systemic AVP release and causes depletion of hypothalamic AVP stores, decreased plasma apelin concentrations and induced hypothalamic accumulation of the peptide, indicating that AVP and apelin are conversely regulated to facilitate systemic AVP release and suppress diuresis. Opposite effects of AVP and apelin are likely to occur at the hypothalamic level through autocrine modulation of the phasic electrical activity of AVP neurons. Altogether, these data demonstrate that apelin acts as a potent diuretic neuropeptide counteracting AVP actions through inhibition of AVP neuron activity and AVP release. The coexistence of apelin and AVP in magnocellular neurons, their opposite biological effects, and regulation are likely to play a key role for maintaining body fluid homeostasis.


Subject(s)
Arginine Vasopressin/metabolism , Carrier Proteins/blood , Diuresis/physiology , Neurons/metabolism , Water-Electrolyte Balance/physiology , Amino Acid Sequence , Animals , Antibodies , Apelin , Carrier Proteins/chemistry , Carrier Proteins/immunology , Carrier Proteins/pharmacology , Cross Reactions , Diuresis/drug effects , Female , Hypothalamus/cytology , Hypothalamus/metabolism , Injections, Intraventricular , Intercellular Signaling Peptides and Proteins , Lactation , Male , Molecular Sequence Data , Natriuresis/drug effects , Natriuresis/physiology , Potassium/metabolism , Rats , Rats, Sprague-Dawley , Water Deprivation/physiology , Water-Electrolyte Balance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL