Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Photodiagnosis Photodyn Ther ; 31: 101747, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32200021

ABSTRACT

INTRODUCTION: Photodynamic therapy improves oral mucositis treatment. The reactive oxygen species (ROS) generated from this reaction could contribute to an anti-inflammatory effect by suppressing inflammatory cells. OBJECTIVE: To evaluate the anti-inflammatory effect of photodynamic therapy using guaiazulene and a red laser in peripheral blood mononuclear cells (PBMCs). METHODS: Guaiazulene solutions (1, 2, 5, 25, 35, and 100 µM in 99.8 % methanol) were irradiated with red laser light (625 nm, 146.2 mW/cm2) in continuous mode at 0, 4, and 8 J/cm2 in black 96-well plates. ROS were measured using spin trapping technique with electron spin resonance (ESR) spectroscopy and fluorescence. The two highest concentrations were tested using cell viability (PrestoBlue®) and anti-inflammation (RANTES and PGE2 ELISA) assay kits. Kruskal-Wallis and Dunn Bonferroni tests were used for statistical analyses with significant differences at p-value < 0.05. RESULTS: Guaiazulene solutions between 2 and 5 µM exposed to red laser light at 4-8 J/cm2 generated significantly more singlet oxygen compared to the no guaiazulene group (p < 0.01) and reduced RANTES and PGE2 levels in TNF-α-inflamed peripheral blood mononuclear cells without affecting cell viability. CONCLUSION: Photodynamic activation of guaiazulene generated singlet oxygen and suppressed inflammatory markers in PBMCs.


Subject(s)
Photochemotherapy , Azulenes , Lasers , Leukocytes, Mononuclear , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Sesquiterpenes, Guaiane
2.
Front Physiol ; 7: 673, 2016.
Article in English | MEDLINE | ID: mdl-28111553

ABSTRACT

Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations.

SELECTION OF CITATIONS
SEARCH DETAIL