Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Am Chem Soc ; 146(1): 101-105, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38150536

ABSTRACT

Metal organic frameworks (MOFs), a class of porous crystalline materials consisting of metal-based nodes and organic linkers, have emerged as a promising platform for photocatalysis due to their ultrahigh functional surface area, customizable topologies, and tunable energetics. While interesting photochemistry has been reported, the related photoinduced structural dynamics of MOFs remains unclear. The consensus is that the coordination bonds between MOF nodes and linkers are considered static during photoexcitation, while the open-metal sites on the nodes are taken as the key active sites for catalysis. In this work, through a complementary time-resolved visible and infrared (IR) spectroscopic investigation, along with computational studies, we report for the first time light-induced structural bond dissociation (COO-M) and reformation in an iron-oxo framework, MIL-101(Fe). The probed excited state displayed ligand-to-metal charge transfer (LMCT) characteristics and exhibited a ca. 30 µs lifetime. The incredibly long excited-state lifetime led us to probe potential structural rearrangements that facilitated charge separation in MIL-101(Fe). By probing the vibrational fingerprints of the carboxylate linker upon LMCT photoexcitation, we observed the reversible transition of the carboxylate-Fe bond from a bidentate bridging mode to a monodentate mode, indicating the partial dissociation of the carboxylate ligand. Importantly, the bidentate configuration is recovered on the same time scale of the excited state lifetimes as probed via visible transient absorption spectroscopy. The elucidated photoinduced configurational dynamics provides a foundation for an in-depth understanding of MOF-based photocatalytic mechanisms.

2.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003497

ABSTRACT

Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the effects of several bioprocessing treatments (using enzymes, yeast, and combinations of both) on BHs' nutrient and phytochemical content, their digestion and metabolism in vitro (using a gastrointestinal digestion model and mixed microbiota from human faeces). The metabolites were measured using targeted LC-MS/MS and GC analysis and 16S rRNA gene sequencing was used to detect the impact on microbiota composition. BHs are rich in insoluble fibre (31.09 ± 0.22% as non-starch polysaccharides), protocatechuic acid (390.71 ± 31.72 mg/kg), and syringaresinol (125.60 ± 6.76 mg/kg). The bioprocessing treatments significantly increased the extractability of gallic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid, caffeic acid, and syringaresinol in the alkaline-labile bound form, suggesting the bioaccessibility of these phytochemicals to the colon. Furthermore, one of the treatments, EC_2 treatment, increased significantly the in vitro upper gastrointestinal release of bioactive phytochemicals, especially for protocatechuic acid (p < 0.01). The BH fibre was fermentable, promoting the formation mainly of propionate and, to a lesser extent, butyrate formation. The EM_1 and EC_2 treatments effectively increased the content of insoluble fibre but had no effect on dietary fibre fermentation (p > 0.05). These findings promote the use of buckwheat hulls as a source of dietary fibre and phytochemicals to help meet dietary recommendations and needs.


Subject(s)
Fagopyrum , Humans , Fagopyrum/metabolism , Chromatography, Liquid , RNA, Ribosomal, 16S/metabolism , Tandem Mass Spectrometry , Dietary Fiber/metabolism , Phytochemicals/metabolism
3.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240055

ABSTRACT

In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/metabolism , Pseudomonas aeruginosa/metabolism , Cystic Fibrosis/drug therapy , Alginates/metabolism , Biofilms , Adjuvants, Immunologic/therapeutic use , Adjuvants, Pharmaceutic/therapeutic use , Lung , Pseudomonas Infections/drug therapy
4.
Nutr Neurosci ; 23(4): 321-334, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30032721

ABSTRACT

A high-fat diet induces hypothalamic inflammation in rodents which, in turn, contributes to the development of obesity by eliciting both insulin and leptin resistance. However, the mechanism by which long-chain saturated fatty acids trigger inflammation is still contentious. To elucidate this mechanism, the effect of fatty acids on the expression of the pro-inflammatory cytokines IL-6 and TNFα was investigated in the mHypoE-N42 hypothalamic cell line (N42). N42 cells were treated with lauric acid (LA) and palmitic acid (PA). PA challenge was carried out in the presence of either a TLR4 inhibitor, a ceramide synthesis inhibitor (L-cycloserine), oleic acid (OA) or eicosapentaenoic acid (EPA). Intracellular ceramide accumulation was quantified using LC-ESI-MS/MS. PA but not LA upregulated IL-6 and TNFα. L-cycloserine, OA and EPA all counteracted PA-induced intracellular ceramide accumulation leading to a downregulation of IL-6 and TNFα. However, a TLR4 inhibitor failed to inhibit PA-induced upregulation of pro-inflammatory cytokines.In conclusion, PA induced the expression of IL-6 and TNFα in N42 neuronal cells independently of TLR4 but, partially, via ceramide synthesis with OA and EPA being anti-inflammatory by decreasing PA-induced intracellular ceramide build-up. Thus, ceramide accumulation represents one on the mechanisms by which PA induces inflammation in neurons.


Subject(s)
Ceramides/biosynthesis , Encephalitis/metabolism , Hypothalamus/metabolism , Palmitic Acid/administration & dosage , Palmitic Acid/metabolism , Toll-Like Receptor 4/metabolism , Animals , Apoptosis/drug effects , Cell Line , Encephalitis/chemically induced , Hypothalamus/drug effects , Inflammation Mediators/metabolism , Neurons/drug effects , Neurons/metabolism , Rats, Sprague-Dawley
5.
J Environ Qual ; 40(3): 751-66, 2011.
Article in English | MEDLINE | ID: mdl-21546661

ABSTRACT

In the past decades, environmental scientists have become increasingly involved in developing novel approaches for applying emerging spectroscopic techniques to complex environmental matrices. The objective of this review is to convey the most common chemical species of phosphorus reported for soils, sediments, model systems, and waste materials based on analyses by four spectroscopic techniques: X-ray absorption near-edge structure, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and Raman spectroscopy. Unique information is provided by each technique at a level of specificity that depends in part on matrix complexity. The X-ray absorption near-edge structure and nuclear magnetic resonance techniques reveal inorganic and organic P species in intact environmental matrices or in chemical extracts, whereas the Fourier transform infrared and Raman techniques can provide more specific bonding information about mineral or adsorbed P species in model analogs of matrix components. The most common P species in soils and sediments as indicated by spectroscopy are hydroxyapatite and octacalcium phosphate minerals, phosphate adsorbed on Fe- and Al-oxides, pyrophosphates and polyphosphates, phosphate mono- and di-esters, and phosphonates. Continued advancements in spectroscopic methods should improve speciation-based models of P mobilization and transformations in the environment.


Subject(s)
Environmental Monitoring/methods , Magnetic Resonance Spectroscopy/methods , Phosphorus/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , X-Ray Absorption Spectroscopy/methods , Computer Simulation , Environmental Monitoring/instrumentation , Geologic Sediments/analysis , Magnetic Resonance Spectroscopy/instrumentation , Phosphorus/analysis , Phosphorus Compounds/analysis , Phosphorus Compounds/chemistry , Soil/analysis , Soil/chemistry , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectrum Analysis, Raman/instrumentation , Waste Products/analysis , X-Ray Absorption Spectroscopy/instrumentation
6.
Nutrients ; 1(2): 178-96, 2009 02.
Article in English | MEDLINE | ID: mdl-22253977

ABSTRACT

The effect of supplementation with 1% conjugated linoleic acid and 1% n-3 long chain polyunsaturated fatty acids (CLA/n-3) was assessed in rats. Food intake increased with no difference in body weights. White adipose tissue weights were reduced whereas brown adipose tissue and uncoupling protein-1 expression were increased. Plasma adiponectin, triglyceride and cholesterol levels were reduced while leptin, ghrelin and liver weight and lipid content were unchanged. Hypothalamic gene expression measurements revealed increased expression of orexigenic and decreased expression of anorexigenic signals. Thus, CLA/n-3 increases food intake without affecting body weight potentially through increasing BAT size and up-regulating UCP-1 in rats.


Subject(s)
Adipose Tissue, Brown/drug effects , Animal Feed/analysis , Eating/drug effects , Fatty Acids, Omega-3/pharmacology , Linoleic Acids, Conjugated/pharmacology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Blood Glucose , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Gene Expression Regulation/drug effects , Linoleic Acids, Conjugated/administration & dosage , Lipids/blood , Male , Muscle Proteins/genetics , Muscle Proteins/metabolism , Random Allocation , Rats , Weight Gain
7.
Endocrinology ; 148(1): 21-6, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17008393

ABSTRACT

Ghrelin stimulates food intake and adiposity and thereby increases body weight (BW) in rodents after central as well as peripheral administration. Recently, it was discovered that the gene precursor of ghrelin encoded another secreted and bioactive peptide named obestatin. First reports appeared to demonstrate that this peptide requires an amidation for its biological activity and acts through the orphan receptor, GPR-39. Obestatin was shown to have actions opposite to ghrelin on food intake, BW, and gastric emptying. In the present study, we failed to observe any effect of obestatin on food intake, BW, body composition, energy expenditure, locomotor activity, respiratory quotient, or hypothalamic neuropeptides involved in energy balance regulation. In agreement with the first report, we were unable to find any effect of obestatin on GH secretion in vivo. Moreover, we were unable to find mRNA expression of GPR-39, the putative obestatin receptor, in the hypothalamus of rats. Therefore, the results presented here do not support a role of the obestatin/GPR-39 system in the regulation of energy balance.


Subject(s)
Energy Metabolism/drug effects , Growth Hormone/metabolism , Hypothalamus/drug effects , Peptide Hormones/pharmacology , Animals , Eating/drug effects , Eating/physiology , Energy Metabolism/physiology , Gene Expression/drug effects , Gene Expression/physiology , Ghrelin , Hypothalamus/metabolism , Hypothalamus/physiology , Male , Mice , Mice, Inbred C57BL , Peptide Hormones/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Vagotomy , Weight Gain/drug effects , Weight Gain/physiology
8.
Eur J Endocrinol ; 153(3): R1-5, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16131594

ABSTRACT

OBJECTIVE: Several hormones expressed in white adipose tissue influence food intake at the central level. We sought to determine whether resistin, a circulating adipose-derived hormone in rodents, has actions on the hypothalamus by determining the effects of central resistin injection on food intake and on hypothalamic Fos protein expression. DESIGN: As resistin expression in adipose tissue is influenced by altered nutritional status, we studied the effect of central resistin in both fed and pre-fasted rats. RESULTS: In fasted rats, central injection of resistin decreased food intake acutely and increased the number of cells that express Fos protein in the arcuate nucleus but not in any other hypothalamic structure. The effect on food intake was dose-dependent and did not result in the formation of a conditioned taste aversion. CONCLUSIONS: Taken together, these results provide the first evidence documenting a central action of resistin, which could be involved in a feedback loop targeting the hypothalamus. On the other hand, since we observed resistin mRNA in the arcuate and ventromedial nuclei of the hypothalamus, it is also possible that brain-derived resistin serves as a neuropeptide involved in the regulation of energy homeostasis. However, since resistin-induced satiety was modest and transient, as central administration for several days did not affect body weight, the physiological relevance and therapeutic potential of the observed principal phenomenon may be limited.


Subject(s)
Eating/drug effects , Hormones, Ectopic/pharmacology , Hypothalamus/drug effects , Satiety Response/drug effects , Adiponectin , Animals , Body Weight/drug effects , Eating/physiology , Hypothalamus/metabolism , Immunohistochemistry , In Situ Hybridization , Injections, Intraventricular , Insulin/blood , Intercellular Signaling Peptides and Proteins/blood , Leptin/blood , Male , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/genetics , Rats , Resistin , Satiety Response/physiology , Statistics, Nonparametric , Taste/physiology
SELECTION OF CITATIONS
SEARCH DETAIL