Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nitric Oxide ; 143: 16-28, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38141926

ABSTRACT

The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Curcumin , Humans , Curcumin/pharmacology , Nitric Oxide/metabolism , Cardiovascular System/metabolism , Anti-Inflammatory Agents , Antioxidants/pharmacology
2.
Drug Chem Toxicol ; 46(4): 617-624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35575100

ABSTRACT

Oxidative stress plays a prominent role in expanding toxicity and various diseases. This study investigated the potential protective effects of ginger (Zingiber officinale) rhizome extract and NAC on docetaxel induced genotoxicity and oxidative stress. The antioxidant power of NAC and ginger extract on the genetic toxicity induced by docetaxel was assessed by micronucleus test. The ROS test with DCFH reagent was used to assess the reactive oxygen species. The thiobarbituric acid method was used to evaluate the amount of MDA produced by docetaxel. The amounts of phenol and flavonoids in the ginger extracts were also evaluated. The amount of phenol in the ginger extract was 0.886 mg of gallic acid per gram of dry extract. The amount of flavonoids were 0.242 mg/mL of quercetin per gram of dry extract. As shown by the micronucleus results, concentrations of 100 and 500 µM NAC and all concentrations of the ginger extract significantly reduced the number of micronuclei produced by docetaxel. On the other hand, the results of oxidative stress tests (ROS and LPO) showed that docetaxel in HGF cells increased the production of ROS and LPO, and the concentrations of ginger extract and NAC decreased oxidative stress in HGF cells in a dose-dependent manner. The results indicate that using these two antioxidants helps inhibit genetic toxicity and oxidative stress caused by docetaxel.


Subject(s)
Acetylcysteine , Zingiber officinale , Acetylcysteine/pharmacology , Docetaxel/toxicity , Reactive Oxygen Species , Oxidative Stress , Plant Extracts/pharmacology , Antioxidants/pharmacology , Flavonoids/pharmacology , Phenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL