Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Genet Metab ; 131(3): 325-340, 2020 11.
Article in English | MEDLINE | ID: mdl-33069577

ABSTRACT

Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brain/metabolism , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/metabolism , Brain/pathology , Brain Diseases, Metabolic/diet therapy , Brain Diseases, Metabolic/epidemiology , Brain Diseases, Metabolic/metabolism , Carnitine/metabolism , Child , Child, Preschool , Corpus Striatum/pathology , Diet , Female , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Infant , Infant, Newborn , Lysine/metabolism , Male
2.
Blood ; 131(20): 2183-2192, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29549173

ABSTRACT

An international, multicenter registry was established to collect retrospective and prospective clinical data on patients with pyruvate kinase (PK) deficiency, the most common glycolytic defect causing congenital nonspherocytic hemolytic anemia. Medical history and laboratory and radiologic data were retrospectively collected at enrollment for 254 patients with molecularly confirmed PK deficiency. Perinatal complications were common, including anemia that required transfusions, hyperbilirubinemia, hydrops, and prematurity. Nearly all newborns were treated with phototherapy (93%), and many were treated with exchange transfusions (46%). Children age 5 years and younger were often transfused until splenectomy. Splenectomy (150 [59%] of 254 patients) was associated with a median increase in hemoglobin of 1.6 g/dL and a decreased transfusion burden in 90% of patients. Predictors of a response to splenectomy included higher presplenectomy hemoglobin (P = .007), lower indirect bilirubin (P = .005), and missense PKLR mutations (P = .0017). Postsplenectomy thrombosis was reported in 11% of patients. The most frequent complications included iron overload (48%) and gallstones (45%), but other complications such as aplastic crises, osteopenia/bone fragility, extramedullary hematopoiesis, postsplenectomy sepsis, pulmonary hypertension, and leg ulcers were not uncommon. Overall, 87 (34%) of 254 patients had both a splenectomy and cholecystectomy. In those who had a splenectomy without simultaneous cholecystectomy, 48% later required a cholecystectomy. Although the risk of complications increases with severity of anemia and a genotype-phenotype relationship was observed, complications were common in all patients with PK deficiency. Diagnostic testing for PK deficiency should be considered in patients with apparent congenital hemolytic anemia and close monitoring for iron overload, gallstones, and other complications is needed regardless of baseline hemoglobin. This trial was registered at www.clinicaltrials.gov as #NCT02053480.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Genetic Association Studies , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/diagnosis , Adolescent , Adult , Anemia, Hemolytic, Congenital Nonspherocytic/etiology , Anemia, Hemolytic, Congenital Nonspherocytic/metabolism , Anemia, Hemolytic, Congenital Nonspherocytic/therapy , Blood Transfusion , Child , Child, Preschool , Cholecystectomy/adverse effects , Cholecystectomy/methods , Combined Modality Therapy , Enzyme Activation , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Phenotype , Pyruvate Kinase/metabolism , Pyruvate Metabolism, Inborn Errors/etiology , Pyruvate Metabolism, Inborn Errors/metabolism , Pyruvate Metabolism, Inborn Errors/therapy , Splenectomy/adverse effects , Splenectomy/methods , Symptom Assessment , Treatment Outcome , Young Adult
3.
Am J Hematol ; 90(9): 825-30, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26087744

ABSTRACT

Over the last several decades, our understanding of the genetic variation, pathophysiology, and complications of the hemolytic anemia associated with red cell pyruvate kinase deficiency (PKD) has expanded. Nonetheless, there remain significant gaps in our knowledge with regard to clinical care and monitoring. Treatment remains supportive with phototherapy and/or exchange transfusion in the newborn period, regular or intermittent red cell transfusions in children and adults, and splenectomy to decrease transfusion requirements and/or anemia related symptoms. In this article, we review the clinical diversity of PKD, the current standard of treatment and for supportive care, the complications observed, and future treatment directions.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/therapy , Erythrocyte Transfusion , Exchange Transfusion, Whole Blood , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/therapy , Adult , Anemia, Hemolytic, Congenital Nonspherocytic/enzymology , Anemia, Hemolytic, Congenital Nonspherocytic/pathology , Anemia, Hemolytic, Congenital Nonspherocytic/surgery , Child , Disease Management , Humans , Infant, Newborn , Phototherapy , Pyruvate Metabolism, Inborn Errors/enzymology , Pyruvate Metabolism, Inborn Errors/pathology , Pyruvate Metabolism, Inborn Errors/surgery , Splenectomy
4.
Am J Hematol ; 86(10): 827-34, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21815188

ABSTRACT

Pyruvate kinase deficiency is a chronic illness with age specific consequences. Newborns suffer life-threatening hemolytic crisis and hyperbilirubinemia. Adults are at risk for infections because of asplenia, pregnancy-related morbidity, and may suffer organ damage because of systemic iron overload. We describe 27 Old Order Amish patients (ages 8 months-52 years) homozygous for c.1436G>A mutations in PKLR. Each subject had a predictable neonatal course requiring packed red blood cell transfusions (30 ± 5 mL/kg) to control hemolytic disease and intensive phototherapy to prevent kernicterus. Hemochromatosis affected 29% (n = 4) of adult patients, who had inappropriately normal serum hepcidin (34.5 ± 12.7 ng/mL) and GDF-15 (595 ± 335pg/mL) relative to hyperferritinemia (769 ± 595 mg/dL). A high prevalence of HFE gene mutations exists in this population and may contribute to iron-related morbidity. Based on our observations, we present a strategy for long-term management of pyruvate kinase deficiency.


Subject(s)
Amish , Erythrocytes/enzymology , Pyruvate Kinase/deficiency , Adolescent , Adult , Anemia, Hemolytic/blood , Anemia, Hemolytic/enzymology , Anemia, Hemolytic/genetics , Child , Child, Preschool , Cohort Studies , Disease Management , Female , Humans , Infant , Longitudinal Studies , Male , Middle Aged , Pennsylvania , Pregnancy , Pyruvate Kinase/blood , Pyruvate Kinase/genetics , Risk Factors , Young Adult
5.
Mol Genet Metab ; 91(2): 165-75, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17409006

ABSTRACT

Over a four-year period, we collected clinical and biochemical data from five Amish children who were homozygous for missense mutations in 5,10-methylenetetrahydrofolate reductase (MTHFR c.1129C>T). The four oldest patients had irreversible brain damage prior to diagnosis. The youngest child, diagnosed and started on betaine therapy as a newborn, is healthy at her present age of three years. We compared biochemical data among four groups: 16 control subjects, eight heterozygous parents, and five affected children (for the latter group, both before and during treatment with betaine anhydrous). Plasma amino acid concentrations were used to estimate changes in cerebral methionine uptake resulting from betaine therapy. In all affected children, treatment with betaine (534+/-222 mg/kg/day) increased plasma S-adenosylmethionine, improved markers of tissue methyltransferase activity, and resulted in a threefold increase of calculated brain methionine uptake. Betaine therapy did not normalize plasma total homocysteine, nor did it correct cerebral 5-methyltetrahydrofolate deficiency. We conclude that when the 5-methyltetrahydrofolate content of brain tissue is low, dietary betaine sufficient to increase brain methionine uptake may compensate for impaired cerebral methionine recycling. To effectively support the metabolic requirements of rapid brain growth, a large dose of betaine should be started early in life.


Subject(s)
Betaine/therapeutic use , Brain Diseases/prevention & control , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Adolescent , Adult , Brain/metabolism , Brain Diseases/cerebrospinal fluid , Brain Diseases/metabolism , Child , Child, Preschool , Humans , Infant, Newborn , Methionine/cerebrospinal fluid , Methionine/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methyltransferases/metabolism , Mutation, Missense , Neonatal Screening , S-Adenosylmethionine/blood , S-Adenosylmethionine/cerebrospinal fluid
6.
Eur J Pediatr ; 165(5): 306-19, 2006 May.
Article in English | MEDLINE | ID: mdl-16435131

ABSTRACT

We summarize the treatment of 20 patients with Crigler-Najjar disease (CND) managed at one center from 1989 to 2005 (200 patient-years). Diagnosis was confirmed by sequencing the UGTA1A gene. Nineteen patients had a severe (type 1) phenotype. Major treatment goals were to maintain the bilirubin to albumin concentration ratio at <0.5 in neonates and <0.7 in older children and adults, to avoid drugs known to displace bilirubin from albumin, and to manage temporary exacerbations of hyperbilirubinemia caused by illness or gallstones. A variety of phototherapy systems provided high irradiance over a large body surface. Mean total bilirubin for the group was 16+/-5 mg/dl and increased with age by approximately 0.8 mg/dl per year. The molar ratio of bilirubin to albumin ranged from 0.17 to 0.75 (mean: 0.44). The overall non-surgical hospitalization rate was 0.12 hospitalizations per patient per year; one-half of these were for neonatal hyperbilirubinemia and the remainder were for infectious illnesses. Ten patients (50%) underwent elective laproscopic cholecystectomy for cholelithiasis. No patient required invasive bilirubin removal or developed bilirubin-induced neurological damage under our care. Visual acuity and color discrimination did not differ between CND patients and age-matched sibling controls. Four patients treated with orthotopic liver transplantation were effectively cured of CND, although one suffered significant transplant-related complications.Conclusions. While patients await liver transplantation for CND, hyperbilirubinemia can be managed safely and effectively to prevent kernicterus. Lessons learned from CND can be applied to screening and therapy of non-hemolytic jaundice in otherwise healthy newborns.


Subject(s)
Crigler-Najjar Syndrome/therapy , Kernicterus/prevention & control , Adolescent , Adult , Albumins/therapeutic use , Child , Child, Preschool , Cholagogues and Choleretics/therapeutic use , Crigler-Najjar Syndrome/complications , Crigler-Najjar Syndrome/genetics , Follow-Up Studies , Glucose/therapeutic use , Hospitalization/statistics & numerical data , Humans , Infant , Infusions, Intravenous , Kernicterus/etiology , Liver Transplantation/statistics & numerical data , Phototherapy/methods , Sweetening Agents/therapeutic use , Ursodeoxycholic Acid/therapeutic use
7.
Pediatrics ; 109(6): 999-1008, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12042535

ABSTRACT

OBJECTIVE: To evaluate an approach to the diagnosis and treatment of maple syrup disease (MSD). METHODS: Family histories and molecular testing for the Y393N mutation of the E1alpha subunit of the branched-chain alpha-ketoacid dehydrogenase allow us to identify infants who were at high risk for MSD. Amino acid concentrations were measured in blood specimens from these at-risk infants between 12 and 24 hours of age. An additional 18 infants with MSD were diagnosed between 4 and 16 days of age because of metabolic illness. A treatment protocol for MSD was designed to 1) inhibit endogenous protein catabolism, 2) sustain protein synthesis, 3) prevent deficiencies of essential amino acids, and 4) maintain normal serum osmolarity. Our protocol emphasizes the enhancement of protein anabolism and dietary correction of imbalances in plasma amino acids rather than removal of leucine by dialysis or hemofiltration. During acute illnesses, the rate of decrease of the plasma leucine level was monitored as an index of net protein synthesis. The treatment protocol for acute illnesses included the use of mannitol, furosemide, and hypertonic saline to maintain or reestablish normal serum sodium and extracellular osmolarity and thereby prevent or reverse life-threatening cerebral edema. Similar principles were followed for both sick and well outpatient management, especially during the first year, when careful matching of branched-chain amino acid intake with rapidly changing growth rates was necessary. Branched-chain ketoacid excretion was monitored frequently at home and branched-chain amino acid levels were measured within the time of a routine clinic visit, allowing immediate diagnosis and treatment of metabolic derangements. RESULTS: 1) Eighteen neonates with MSD were identified in the high-risk group (n = 39) between 12 and 24 hours of age using amino acid analysis of plasma or whole blood collected on filter paper. The molar ratio of leucine to alanine in plasma ranged from 1.3 to 12.4, compared with a control range of 0.12 to 0.53. None of the infants identified before 3 days of age and managed by our treatment protocol became ill during the neonatal period, and 16 of the 18 were managed without hospitalization. 2) Using our treatment protocol, 18 additional infants who were biochemically intoxicated at the time of diagnosis recovered rapidly. In all infants, plasma leucine levels decreased to <400 micromol/L between 2 to 4 days after diagnosis. Rates of decrease of the plasma leucine level using a combination of enteral and parenteral nutrition were consistently higher than those reported for dialysis or hemoperfusion. Prevention of acute isoleucine, valine, and other plasma amino acid deficiencies by appropriate supplements allowed a sustained decrease of plasma leucine levels to the therapeutic range of 100 to 300 micromol/L, at which point dietary leucine was introduced. 3) Follow-up of the 36 infants over >219 patient years showed that, although common infections frequently cause loss of metabolic control, the overall rate of hospitalization after the neonatal period was only 0.56 days per patient per year of follow-up, and developmental outcomes were uniformly good. Four patients developed life-threatening cerebral edema as a consequence of metabolic intoxication induced by infection, but all recovered. These 4 patients each showed evidence that acutely decreased serum sodium concentration and decreased serum osmolarity were associated with rapid progression of cerebral edema during their acute illnesses. CONCLUSIONS: Classical MSD can be managed to allow a benign neonatal course, normal growth and development, and low hospitalization rates. However, neurologic function may deteriorate rapidly at any age because of metabolic intoxication provoked by common infections and injuries. Effective management of the complex pathophysiology of this biochemical disorder requires integrated management of general medical care and nutrition, as well as control of several variables that influence endogenous protein anabolism and catabolism, plasma amino acid concentrations, and serum osmolarity.


Subject(s)
Amino Acids, Branched-Chain/blood , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/therapy , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Adult , Alanine/blood , Alanine/metabolism , Amino Acids, Branched-Chain/metabolism , Clinical Protocols , Female , Follow-Up Studies , Furosemide/therapeutic use , Humans , Hydrazines , Infant, Newborn , Isoleucine/blood , Isoleucine/metabolism , Ketone Oxidoreductases/blood , Ketone Oxidoreductases/genetics , Leucine/blood , Leucine/metabolism , Mannitol/therapeutic use , Maple Syrup Urine Disease/blood , Multienzyme Complexes/blood , Multienzyme Complexes/genetics , Mutation , Neonatal Screening , Osmolar Concentration , Polymerase Chain Reaction , Saline Solution, Hypertonic/therapeutic use , Sodium/blood , Treatment Outcome , Valine/blood , Valine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL