Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
Am J Chin Med ; 52(2): 315-354, 2024.
Article in English | MEDLINE | ID: mdl-38553799

ABSTRACT

Liver diseases and their related complications endanger the health of millions of people worldwide. The prevention and treatment of liver diseases are still serious challenges both in China and globally. With the improvement of living standards, the prevalence of metabolic liver diseases, including non-alcoholic fatty liver disease and alcoholic liver disease, has increased at an alarming rate, resulting in more cases of end-stage liver disease. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently needed. Glycyrrhizin (GL), a triterpene glycoside from the roots of licorice plants, possesses a wide range of pharmacological and biological activities. Currently, GL preparations (GLPs) have certain advantages in the treatment of liver diseases, with good clinical effects and fewer adverse reactions, and have shown broad application prospects through multitargeting therapeutic mechanisms, including antisteatotic, anti-oxidative stress, anti-inflammatory, immunoregulatory, antifibrotic, anticancer, and drug interaction activities. This review summarizes the currently known biological activities of GLPs and their medical applications in the treatment of liver diseases, and highlights the potential of these preparations as promising therapeutic options and their alluring prospects for the treatment of liver diseases.


Subject(s)
Glycyrrhizic Acid , Liver Diseases , Humans , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Liver Diseases/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Oxidative Stress
2.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1413-1419, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005825

ABSTRACT

The toxic pathogen theory, an important part of the theories of traditional Chinese medicine(TCM), began in the Qin and Han dynasties, formed in the Jin, Sui, Tang, and Song dynasties, developed rapidly in the Ming and Qing dynasties, and conti-nued to develop in contemporary times based on the achievements of its predecessors. The continuous exploration, practice, and inheri-tance of many medical practitioners over the generations have facilitated the enrichment of its connotation. The toxic pathogen is violent, fierce, dangerous, prolonged, rapid in transmission, easy to hurt the internal organs, hidden, and latent, with many changes, and it is closely related to the development of tumor diseases. TCM has a history of thousands of years in the prevention and treatment of tumor diseases. It is gradually realized that the etiology of tumor is mainly attributed to the deficiency of healthy Qi and excess of to-xic pathogen, and the struggle between healthy Qi and toxic pathogen runs through the whole course of tumor, with the deficiency of healthy Qi as the prerequisite and the invasion of toxic pathogen as the root of the occurrence. The toxic pathogen has a strong carcinogenic effect and is involved in the whole process of tumor development, which is closely related to the malignant behaviors of tumors, including proliferation, invasion, and metastasis. This study discussed the historical origin and modern interpretation of the toxic pathogen theory in the prevention and treatment of tumors, with aims of sorting out the theoretical system based on the toxic pathogen theory in the treatment of tumor diseases, and illustrating the importance of the toxic pathogen theory in the treatment of tumors in the context of modern research on pharmacological mechanisms and the development and marketing of relevant anti-tumor Chinese medicinal preparations.


Subject(s)
Medicine, Chinese Traditional , Cell Movement , China
3.
J Ethnopharmacol ; 302(Pt A): 115885, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36328204

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gallic acid (GA) is a natural polyphenolic compound derived from Rhus chinensis Mill. with a variety of biological activities such as astringent sweat, cough, dysentery, hemostasis, and detoxification, and is widely used in China as a treatment for cough, bleeding, and gastrointestinal disorders. In recent years, the anticancer activity of GA has been demonstrated in a variety of cancers, affecting multiple cellular pathways associated with cancer onset, development and progression. AIM OF THE STUDY: To investigate the role and potential mechanism of GA on gastric precancerous lesions (GPL), the key turning point of gastritis to gastric cancer, with the aim of delaying, blocking or reversing the dynamic overall process of "inflammation-cancer transformation" and thus blocking GPL to prevent the development of gastric cancer. MATERIALS AND METHODS: In this study, we established N-Nitroso-N-methylurea (MNU)-induced GPL mice model and induced precancerous lesions of gastric cancer cells (MC), i.e. epithelial mesenchymal transition (EMT), in human gastric mucosal epithelial cells (GES-1) with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We used conventional pathology, immunohistochemistry, RNA sequencing, Western blot and other techniques to study the therapeutic effect of GA on GPL and its possiblemechanism in vitro and in vivo. RESULTS: The results showed that compared with normal GES-1 cells, MC cells had the characteristics of malignant cells such as abnormal proliferation, invasion and metastasis, accompanied by decreased expression of EMT-related protein E-cadherin and increased expression of N-cadherin and Vimentin. GA can inhibit the malignant behavior of MC cell proliferation and induce its G0/G1 phase arrest, which is achieved by downregulating the Wnt/ß-catenin signaling pathway and thereby inhibiting the EMT process. However, when we incubated with the Wnt pathway activator (Wnt agonist 1), the effect of GA was reversed. Furthermore, analysis of human gastric specimens showed that activation of the Wnt/ß-catenin pathway was significantly associated with GPL pathological changes. Meanwhile, GA reversed MNU-induced intestinal metaplasia and partial dysplasia in GPL mice. CONCLUSION: Taken together, these results indicate that GA prevents the occurrence and development of GPL by inhibiting the Wnt/ß-catenin signaling pathway and then inhibiting the EMT process, which may become potential candidates for the treatment of GPL.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Humans , Mice , Animals , Wnt Signaling Pathway , Epithelial-Mesenchymal Transition , Stomach Neoplasms/genetics , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Cough , Cell Movement , beta Catenin/metabolism , Cell Proliferation , Precancerous Conditions/chemically induced , Precancerous Conditions/drug therapy , Methylnitronitrosoguanidine , Cadherins/metabolism , Cell Line, Tumor
4.
Int J Nanomedicine ; 17: 4163-4193, 2022.
Article in English | MEDLINE | ID: mdl-36134202

ABSTRACT

Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing new prospects for cancer treatment.


Subject(s)
Biological Products , Neoplasms , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Differentiation , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplastic Stem Cells/pathology
5.
J Agric Food Chem ; 58(15): 8528-34, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20681639

ABSTRACT

Panax notoginseng was used as the medium for lactic acid bacteria fermentation to manufacture product with antihepatocarcinoma activity. The fermentation broth prepared in a 250 mL Erlenmeyer flask was found to possess antiproliferation activity against hepatoma Hep3B cells. At the dosage of 500 microg/mL, the viability of hepatoma Hep3B cells was approximately 2.2%. When the fermentation was scaled up to a 6.6 L fermenter, it was found that the fermentation broth produced at 37 degrees C for 2 days showed the highest antihepatoma activity. Animal study revealed that when Hep3B implanted SCID mice were treated with 1000 mg/kg BW/day of the fermentation broth, tumor volume and tumor weight were reduced approximately 60% as compared to the negative control group. HPLC analyses showed that saponins in P. notoginseng including notoginsenoside R(1) and ginsenosides Rg(1), Rb(1), Rd, and Rh(4) decreased, but ginsenosides Rh(1) and Rg(3) increased during fermentation. LC-MS/MS revealed that the minor saponins ginsenoside F(1), protopanaxatriol, and notoginseng R(2) also exist in the fermentation product. It appears that ginsenoside Rg(3), ginsenoside Rh(1), and protopanaxatriol are possibly responsible for the enhanced antihepatocarcinoma activity of the P. notoginseng fermentation broth.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Bacteria/metabolism , Drugs, Chinese Herbal/administration & dosage , Fermentation , Hepatoblastoma/drug therapy , Lactic Acid/metabolism , Liver Neoplasms/drug therapy , Panax notoginseng/chemistry , Animals , Antineoplastic Agents, Phytogenic/metabolism , Cell Line, Tumor , Disease Models, Animal , Drugs, Chinese Herbal/metabolism , Humans , Male , Mice , Mice, SCID , Panax notoginseng/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL