Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
J Clin Med ; 10(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884213

ABSTRACT

Background Rheumatoid Arthritis (RA) patients show a higher risk of heart failure. The present study investigated possible causes of cardiac dysfunction related to thyroid hormone (TH) signaling in a RA mouse model. Methods A TNF-driven mouse model of RA[TghuTNF (Tg197)] was used. Cardiac function was evaluated by echocardiography. SERCA2a and phospholamban protein levels in left ventricle (LV) tissue, thyroid hormone levels in serum, TH receptors in LV and TH-related kinase signaling pathways were measured. T3 hormone was administered in female Tg197 mice. Results We show LV and atrial dilatation with systolic dysfunction in Tg197 animals, accompanied by downregulated SERCA2a. We suggest an interaction of pro-inflammatory and thyroid hormone signaling indicated by increased p38 MAPK and downregulation of TRß1 receptor in Tg197 hearts. Interestingly, female Tg197 mice showed a worse cardiac phenotype related to reduced T3 levels and Akt activation. T3 supplementation increased Akt activation, restored SERCA2a expression and improved cardiac function in female Tg197 mice. Conclusions TNF overexpression of Tg197 mice results in cardiac dysfunction via p38 MAPK activation and downregulation of TRß1. Gender-specific reduction in T3 levels could cause the worse cardiac phenotype observed in female mice, while T3 administration improves cardiac function and calcium handling via modified Akt activation.

3.
Can J Physiol Pharmacol ; 92(1): 78-84, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24383876

ABSTRACT

Choline is an essential nutrient, and choline deficiency has been associated with cardiovascular morbidity. Choline is also the precursor of acetylcholine (cholinergic component of the heart's autonomic nervous system), whose levels are regulated by acetylcholinesterase (AChE). Cardiac contraction-relaxation cycles depend on ion gradients established by pumps like the adenosine triphosphatases (ATPases) Na(+)/K(+)-ATPase and Mg(2+)-ATPase. This study aimed to investigate the impact of dietary choline deprivation on the activity of rat myocardial AChE (cholinergic marker), Na(+)/K(+)-ATPase, and Mg(2+)-ATPase, and the possible effects of carnitine supplementation (carnitine, structurally relevant to choline, is used as an adjunct in treating cardiac diseases). Adult male albino Wistar rats were distributed among 4 groups, and were fed a standard or choline-deficient diet for one month with or without carnitine in their drinking water (0.15% w/v). The enzyme activities were determined spectrophotometrically in the myocardium homogenate. Choline deficiency seems to affect the activity of the aforementioned parameters, but only the combination of choline deprivation and carnitine supplementation increased myocardial Na(+)/K(+)-ATPase activity along with a concomitant decrease in the activities of Mg(2+)-ATPase and AChE. The results suggest that carnitine, in the setting of choline deficiency, modulates cholinergic myocardial neurotransmission and the ATPase activity in favour of cardiac work efficiency.


Subject(s)
Acetylcholinesterase/metabolism , Ca(2+) Mg(2+)-ATPase/metabolism , Cardiotonic Agents/pharmacology , Carnitine/pharmacology , Myocardium/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Choline/blood , Choline Deficiency/enzymology , Male , Rats, Wistar
4.
Eur J Pharmacol ; 709(1-3): 20-7, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23562624

ABSTRACT

Choline is a B vitamin co-factor and its deficiency seems to impair heart function. Carnitine, a chemical analog of choline, has been used as adjunct in the management of cardiac diseases. The study investigates the effects of choline deficiency on myocardial performance in adult rats and the possible modifications after carnitine administration. Wistar Albino rats (n=24), about 3 months old, were randomized into four groups fed with: (a) standard diet (control-CA), (b) choline deficient diet (CDD), (c) standard diet and carnitine in drinking water 0.15% w/v (CARN) and (d) choline deficient diet and carnitine (CDD+CARN). After four weeks of treatment, we assessed cardiac function under isometric conditions using the Langendorff preparations [Left Ventricular Developed Pressure (LVDP-mmHg), positive and negative first derivative of LVDP were evaluated], measured serum homocysteine and brain natriuretic peptide (BNP) levels and performed histopathology analyses. In the CDD group a compromised myocardium contractility compared to control (P=0.01), as assessed by LVDP, was noted along with a significantly impaired diastolic left ventricular function, as assessed by (-) dp/dt (P=0.02) that were prevented by carnitine. Systolic force, assessed by (+) dp/dt, showed no statistical difference between groups. A significant increase in serum BNP concentration was found in the CDD group (P<0.004) which was attenuated by carnitine (P<0.05), whereas homocysteine presented contradictory results (higher in the CDD+CARN group). Heart histopathology revealed a lymphocytic infiltration of myocardium and valves in the CDD group that was reduced by carnitine. In conclusion, choline deficiency in adult rats impairs heart performance; carnitine acts against these changes.


Subject(s)
Cardiotonic Agents/therapeutic use , Carnitine/therapeutic use , Choline Deficiency/diet therapy , Dietary Supplements , Heart Ventricles/physiopathology , Ventricular Dysfunction, Left/prevention & control , Animals , Cardiotonic Agents/adverse effects , Carnitine/adverse effects , Choline Deficiency/immunology , Choline Deficiency/pathology , Choline Deficiency/physiopathology , Dietary Supplements/adverse effects , Edema, Cardiac/etiology , Edema, Cardiac/prevention & control , Fibrosis , Heart Valves/immunology , Heart Valves/pathology , Heart Ventricles/immunology , Heart Ventricles/pathology , Homocysteine/blood , Hyperhomocysteinemia/etiology , Lymphocytes/immunology , Male , Myocardial Contraction , Natriuretic Peptide, Brain/blood , Random Allocation , Rats , Rats, Wistar , Ventricular Dysfunction, Left/etiology
5.
Metab Brain Dis ; 22(1): 31-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17165152

ABSTRACT

UNLABELLED: Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na(+), K(+))- and Mg(2+)-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (-23%, p < 0.001) and the Na(+), K(+)-ATPase activities (-26%, p < 0.001). Moreover, hypothyroidism had a similar effect on the examined enzyme activities: AChE (-17%, p < 0.001) and Na(+), K(+)-ATPase (-27%, p < 0.001). Mg(2+)-ATPase activity was found unaltered in both the hyper- and the hypothyroid brain regions. IN CONCLUSION: neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na(+), K(+)-ATPase activities. The decreased (by the THs) Na(+), K(+)-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.


Subject(s)
Cerebellum/enzymology , Hydrolases/metabolism , Hyperthyroidism/metabolism , Hypothalamus/enzymology , Hypothyroidism/metabolism , Acetylcholinesterase/metabolism , Adenosine Triphosphatases/metabolism , Age Factors , Animals , Male , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL