Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Plant Cell Physiol ; 63(11): 1695-1708, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36043695

ABSTRACT

To reveal the mechanisms underlying how light affects flavonoid metabolism and the potential role of flavonoids in protecting against photooxidative stress in tea leaves, tea plants adapted to low-light conditions were exposed to full sunlight over 48 h. There was an increase in the activities of catalase (CAT) and superoxide dismutase (SOD) as well as greater accumulation of reactive oxygen species, lutein, tocopherols, ascorbate and malondialdehyde, suggestive of a time-dependent response to photooxidative stress in tea leaves. Analysis of the time dependency of each element of the antioxidant system indicated that carotenoids and tocopherols exhibited the fastest response to light stress (within 3 h), followed by SOD, CAT and catechin, which peaked at 24 h. Meanwhile, flavonols, vitamin C and glutathione showed the slowest response. Subsequent identification of the main phytochemicals involved in protecting against oxidative stress using untargeted metabolomics revealed a fast and initial accumulation of nonesterified catechins that preceded the increase in flavonol glycosides and catechin esters. Gene expression analysis suggested that the light-induced accumulation of flavonoids was highly associated with the gene encoding flavonol synthase. Ultraviolet B (UV-B) irradiation further validated the time-dependent and collaborative effects of flavonoids in photoprotection in tea plants. Intriguingly, the dynamics of the metabolic response are highly distinct from those reported for Arabidopsis, suggesting that the response to light stress is not conserved across plants. This study additionally provides new insights into the functional role of flavonoids in preventing photooxidative stress and may contribute to further improving tea quality through the control of light intensity.


Subject(s)
Arabidopsis , Camellia sinensis , Catechin , Flavonoids/metabolism , Antioxidants/metabolism , Catechin/metabolism , Sunlight , Plant Leaves/metabolism , Camellia sinensis/metabolism , Arabidopsis/metabolism , Tea/metabolism , Tocopherols/metabolism , Superoxide Dismutase/metabolism
2.
Tree Physiol ; 41(2): 317-330, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33104217

ABSTRACT

It is well known that green tea made from fully developed leaves located at the base of young shoots is of lower quality than that made from the still developing leaves located on the top of the shoot. It has additionally been shown that plant shading can significantly improve green tea quality. Here, we aimed to get more insight into the effects of shading on the overall metabolome in different parts of the tea shoots. To do this, field-grown tea plants were shaded by coverage with either a straw layer or a black net, both blocking the daylight intensity for more than 90%. Both the first (i.e. still developing) leaf and the fourth (i.e. fully developed) leaf, as well as the stem of young shoots were harvested and subjected to complementary untargeted metabolomics approaches, using accurate mass LC-Orbitrap-Fourier transform mass spectrometry (FTMS) for profiling both semi-polar and lipid-soluble compounds and GC-TOF-MS for profiling polar compounds. In total, 1419 metabolites were detected. Shading resulted in a decreased ratio of polyphenols to amino acids (which improves the quality of green tea) and lower levels of galloylated catechins in the shoots. The positive effect of shading on the amino acid/catechin ratio was more pronounced in the fully developed (fourth) than in the developing (first) leaves. Furthermore, many metabolites, especially organic acids, carbohydrates and amino acids, showed differential or opposite responses to the shading treatments between the three shoot tissues investigated, suggesting a within-plant spatial regulation or transport/redistribution of carbon and nitrogen resources between the tissues of the growing young shoots. This work provides new insight into the spatial effects of shading on tea plants, which could further help to increase tea quality by improving cultivation measures for plant shading.


Subject(s)
Camellia sinensis , Catechin , Catechin/analysis , Metabolomics , Plant Leaves/chemistry , Tea
3.
Metabolites ; 10(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213984

ABSTRACT

The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile and non-volatile metabolites. Together these results enabled an estimate of "metabolomic/elemental distance" and its correlation with the genetic GBS distance of melon accessions. This study indicates that extensive and non-targeted metabolomics/elemental characterization produced classifications that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome to metabolome/element associations proved less clear. We suggest that the combined genomic, metabolic, and element data reflect the extensive sexual compatibility among melon accessions and the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.

4.
Metabolites ; 10(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881716

ABSTRACT

Asparagus (Asparagus officinalis) is one of the world's top 20 vegetable crops. Both green and white shoots (spears) are produced; the latter being harvested before becoming exposed to light. The crop is grown in nearly all areas of the world, with the largest production regions being China, Western Europe, North America and Peru. Successful production demands high farmer input and specific environmental conditions and cultivation practices. Asparagus materials have also been used for centuries as herbal medicine. Despite this widespread cultivation and consumption, we still know relatively little about the biochemistry of this crop and how this relates to the nutritional, flavour, and neutra-pharmaceutical properties of the materials used. To date, no-one has directly compared the contrasting compositions of the green and white crops. In this short review, we have summarised most of the literature to illustrate the chemical richness of the crop and how this might relate to key quality parameters. Asparagus has excellent nutritional properties and its flavour/fragrance is attributed to a set of volatile components including pyrazines and sulphur-containing compounds. More detailed research, however, is needed and we propose that (untargeted) metabolomics should have a more prominent role to play in these investigations.

5.
New Phytol ; 223(3): 1607-1620, 2019 08.
Article in English | MEDLINE | ID: mdl-31087371

ABSTRACT

(E)-ß-Farnesene (EßF) is the predominant constituent of the alarm pheromone of most aphid pest species. Moreover, natural enemies of aphids use EßF to locate their aphid prey. Some plant species emit EßF, potentially as a defense against aphids, but field demonstrations are lacking. Here, we present field and laboratory studies of flower defense showing that ladybird beetles are predominantly attracted to young stage-2 pyrethrum flowers that emitted the highest and purest levels of EßF. By contrast, aphids were repelled by EßF emitted by S2 pyrethrum flowers. Although peach aphids can adapt to pyrethrum plants in the laboratory, aphids were not recorded in the field. Pyrethrum's (E)-ß-farnesene synthase (EbFS) gene is strongly expressed in inner cortex tissue surrounding the vascular system of the aphid-preferred flower receptacle and peduncle, leading to elongated cells filled with EßF. Aphids that probe these tissues during settlement encounter and ingest plant EßF, as evidenced by the release in honeydew. These EßF concentrations in honeydew induce aphid alarm responses, suggesting an extra layer of this defense. Collectively, our data elucidate a defensive mimicry in pyrethrum flowers: the developmentally regulated and tissue-specific EßF accumulation and emission both prevents attack by aphids and recruits aphid predators as bodyguards.


Subject(s)
Aphids/physiology , Carnivory/physiology , Chrysanthemum cinerariifolium/physiology , Flowers/physiology , Herbivory , Pheromones/pharmacology , Animals , Bicyclic Monoterpenes/metabolism , Chrysanthemum cinerariifolium/drug effects , Chrysanthemum cinerariifolium/genetics , Coleoptera/physiology , Flowers/drug effects , Gene Expression Regulation, Plant , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Sesquiterpenes/metabolism , Volatile Organic Compounds/analysis
6.
J Integr Plant Biol ; 58(4): 397-412, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26576823

ABSTRACT

The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was used to elucidate the genetic background of whitefly-resistance related traits and associated biochemical traits in this species. Minor quantitative trait loci (QTLs) for whitefly adult survival (AS) and oviposition rate (OR) were identified and some were confirmed in an F2 BC1 population, where they showed increased percentages of explained variance (more than 30%). Bulked segregant analyses on pools of whitefly-resistant and -susceptible F2 plants enabled the identification of metabolites that correlate either with resistance or susceptibility. Genetic mapping of these metabolites showed that a large number of them co-localize with whitefly-resistance QTLs. Some of these whitefly-resistance QTLs are hotspots for metabolite QTLs. Although a large number of metabolite QTLs correlated to whitefly resistance or susceptibility, most of them are yet unknown compounds and further studies are needed to identify the metabolic pathways and genes involved. The results indicate a direct genetic correlation between biochemical-based resistance characteristics and reduced whitefly incidence in S. pennellii.


Subject(s)
Disease Resistance/genetics , Hemiptera/physiology , Metabolomics , Plant Diseases/genetics , Plant Diseases/parasitology , Solanum/metabolism , Solanum/parasitology , Animals , Crosses, Genetic , Discriminant Analysis , Gas Chromatography-Mass Spectrometry , Genotype , Metabolome/genetics , Oviposition , Phenotype , Quantitative Trait Loci/genetics , Solanum/genetics
7.
BMC Genet ; 15: 142, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25539894

ABSTRACT

BACKGROUND: Host plant resistance has been proposed as one of the most promising approaches in whitefly management. Already in 1995 two quantitative trait loci (Tv-1 and Tv-2) originating from S. habrochaites CGN1.1561 were identified that reduced the oviposition rate of the greenhouse whitefly (Trialeurodes vaporariorum). After this first study, several others identified QTLs affecting whitefly biology as well. Generally, the QTLs affecting oviposition were highly correlated with a reduction in whitefly survival and the presence of high densities of glandular trichomes type IV. The aim of our study was to further characterize Tv-1 and Tv-2, and to determine their role in resistance against Bemisia tabaci. RESULTS: We selected F2 plants homozygous for the Tv-1 and Tv-2 QTL regions and did three successive backcrosses without phenotypic selection. Twenty-three F2BC3 plants were phenotyped for whitefly resistance and differences were found in oviposition rate of B. tabaci. The F2BC3 plants with the lowest oviposition rate had an introgression on Chromosome 5 in common. Further F2BC4, F2BC4S1 and F2BC4S2 families were developed, genotyped and phenotyped for adult survival, oviposition rate and trichome type and density. It was possible to confirm that an introgression on top of Chr. 5 (OR-5), between the markers rs-2009 and rs-7551, was responsible for reducing whitefly oviposition rate. CONCLUSION: We found a region of 3.06 Mbp at the top of Chr. 5 (OR-5) associated with a reduction in the oviposition rate of B. tabaci. This reduction was independent of the presence of the QTLs Tv-1 and Tv-2 as well as of the presence of trichomes type IV. The OR-5 locus will provide new opportunities for resistance breeding against whiteflies, which is especially relevant in greenhouse cultivation.


Subject(s)
Hemiptera/physiology , Oviposition , Solanum lycopersicum/genetics , Solanum/genetics , Animals , Female , Genes, Plant , Genetic Association Studies , Herbivory , Pest Control, Biological , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait Loci
8.
Theor Appl Genet ; 126(6): 1487-501, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23440381

ABSTRACT

Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance.


Subject(s)
Disease Resistance/genetics , Hemiptera , Plant Diseases/parasitology , Quantitative Trait Loci/genetics , Solanum/genetics , Animals , Breeding/methods , Chromatography, Liquid , Chromosome Mapping , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Netherlands , Polymorphism, Single Nucleotide/genetics , Solanum/chemistry , Trichomes/anatomy & histology , Trichomes/genetics
9.
Plant Physiol ; 158(3): 1306-18, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22223596

ABSTRACT

Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits.


Subject(s)
Metabolome , Plant Tubers/metabolism , Quantitative Trait Loci , Solanum tuberosum/metabolism , Crosses, Genetic , Diploidy , Gas Chromatography-Mass Spectrometry/methods , Genetic Variation , Phenotype , Phosphates/metabolism , Phosphorylation , Plant Tubers/genetics , Solanum tuberosum/genetics , Starch/metabolism
10.
New Phytol ; 190(3): 683-96, 2011 May.
Article in English | MEDLINE | ID: mdl-21275993

ABSTRACT

• Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. • The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. • This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, ß-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. • The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.


Subject(s)
Cucurbitaceae/growth & development , Cucurbitaceae/metabolism , Fruit/growth & development , Fruit/metabolism , Metabolomics , Cluster Analysis , Magnetic Resonance Spectroscopy , Metabolome , Principal Component Analysis , Statistics, Nonparametric , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL