Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 612(7940): 512-518, 2022 12.
Article in English | MEDLINE | ID: mdl-36477539

ABSTRACT

Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level1,2. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule. Haploinsufficiency of Hdac4, a substrate of salt-inducible kinase 3 (SIK3)3, increased sleep. By contrast, mice that lacked SIK3 or its upstream kinase LKB1 in neurons or with a Hdac4S245A mutation that confers resistance to phosphorylation by SIK3 showed decreased sleep. These findings indicate that LKB1-SIK3-HDAC4 constitute a signalling cascade that regulates sleep and wakefulness. We also performed targeted manipulation of SIK3 and HDAC4 in specific neurons and brain regions. This showed that SIK3 signalling in excitatory neurons located in the cerebral cortex and the hypothalamus positively regulates EEG delta power during non-rapid eye movement sleep (NREMS) and NREMS amount, respectively. A subset of transcripts biased towards synaptic functions was commonly regulated in cortical glutamatergic neurons through the expression of a gain-of-function allele of Sik3 and through sleep deprivation. These findings suggest that NREMS quantity and depth are regulated by distinct groups of excitatory neurons through common intracellular signals. This study provides a basis for linking intracellular events and circuit-level mechanisms that control NREMS.


Subject(s)
Neurons , Sleep Duration , Sleep , Wakefulness , Animals , Mice , Electroencephalography , Neurons/metabolism , Neurons/physiology , Sleep/genetics , Sleep/physiology , Sleep Deprivation/genetics , Wakefulness/genetics , Wakefulness/physiology , Signal Transduction , Delta Rhythm , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Hypothalamus/cytology , Hypothalamus/physiology , Glutamic Acid/metabolism , Sleep, Slow-Wave/genetics , Sleep, Slow-Wave/physiology
2.
Cell Rep ; 24(1): 79-94, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29972793

ABSTRACT

The mammalian brain undergoes sexual differentiation by gonadal hormones during the perinatal critical period. However, the machinery at earlier stages has not been well studied. We found that Ptf1a is expressed in certain neuroepithelial cells and immature neurons around the third ventricle that give rise to various neurons in several hypothalamic nuclei. We show that conditional Ptf1a-deficient mice (Ptf1a cKO) exhibit abnormalities in sex-biased behaviors and reproductive organs in both sexes. Gonadal hormone administration to gonadectomized animals revealed that the abnormal behavior is caused by disorganized sexual development of the knockout brain. Accordingly, expression of sex-biased genes was severely altered in the cKO hypothalamus. In particular, Kiss1, important for sexual differentiation of the brain, was drastically reduced in the cKO hypothalamus, which may contribute to the observed phenotypes in the Ptf1a cKO. These findings suggest that forebrain Ptf1a is one of the earliest regulators for sexual differentiation of the brain.


Subject(s)
Prosencephalon/embryology , Sex Differentiation , Transcription Factors/metabolism , Animals , Cell Lineage , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental , Gonads/abnormalities , Hypothalamus/embryology , Hypothalamus/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Sex Differentiation/genetics , Sexual Behavior, Animal , Transcription Factors/deficiency
3.
Kidney Int ; 93(1): 54-68, 2018 01.
Article in English | MEDLINE | ID: mdl-28964572

ABSTRACT

The transcription factor MafB is essential for development of the parathyroid glands, the expression of which persists after morphogenesis and in adult parathyroid glands. However, the function of MafB in adult parathyroid tissue is unclear. To investigate this, we induced chronic kidney disease (CKD) in wild-type and MafB heterozygote (MafB+/-) mice by feeding them an adenine-supplemented diet, leading to secondary hyperparathyroidism. The elevated serum creatinine and blood urea nitrogen levels in heterozygous and wild-type mice fed the adenine-supplemented diet were similar. Interestingly, secondary hyperparathyroidism, characterized by serum parathyroid hormone elevation and enlargement of parathyroid glands, was suppressed in MafB+/- mice fed the adenine-supplemented diet compared to similarly fed wild-type littermates. Quantitative RT-PCR and immunohistochemical analyses showed that the increased expression of parathyroid hormone and cyclin D2 in mice with CKD was suppressed in the parathyroid glands of heterozygous CKD mice. A reporter assay indicated that MafB directly regulated parathyroid hormone and cyclin D2 expression. To exclude an effect of a developmental anomaly in MafB+/- mice, we analyzed MafB tamoxifen-induced global knockout mice. Hypocalcemia-stimulated parathyroid hormone secretion was significantly impaired in MafB knockout mice. RNA-sequencing analysis indicated PTH, Gata3 and Gcm2 depletion in the parathyroid glands of MafB knockout mice. Thus, MafB appears to play an important role in secondary hyperparathyroidism by regulation of parathyroid hormone and cyclin D2 expression. Hence, MafB may represent a new therapeutic target in secondary hyperparathyroidism.


Subject(s)
Hyperparathyroidism, Secondary/metabolism , MafB Transcription Factor/metabolism , Parathyroid Glands/metabolism , Animals , Blood Urea Nitrogen , Calcium/blood , Creatinine/blood , Cyclin D2/genetics , Cyclin D2/metabolism , Disease Models, Animal , Gene Expression Regulation , Hyperparathyroidism, Secondary/blood , Hyperparathyroidism, Secondary/genetics , Hyperparathyroidism, Secondary/pathology , Hypocalcemia/genetics , Hypocalcemia/metabolism , MafB Transcription Factor/deficiency , MafB Transcription Factor/genetics , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Parathyroid Glands/pathology , Parathyroid Hormone/blood , Parathyroid Hormone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL