Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Mater Sci Mater Med ; 18(10): 2025-31, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17558473

ABSTRACT

The purpose of this study was to evaluate the push-out load-bearing capacity of threaded fiber-reinforced composite (FRC) devices for use as bone-anchored devices. The purpose was also to evaluate the possibility to use bioactive glass (BAG) granules on the experimental FRC devices in terms the mechanical behavior. Three experimental FRC devices (n = 15) were fabricated for the study: (a) threaded device with smooth surface; (b) threaded device with BAG granules (S53P4, Vivoxid Ltd, Turku, Finland) and supplementary retention grooves, and (c) unthreaded device with BAG granules. Threaded titanium devices were used as controls. The FRC devices were prepared from a light-polymerized dimethacrylate resin reinforced with preimpregnated unidirectional and bidirectional E-glass fibers (EverStick, StickTech Ltd, Turku, Finland). Experimental and control devices were embedded into dental plaster to simulate bone before the mechanical push-out test was carried out. ANOVA and Weibull analysis were used for the statistical evaluation. Threaded FRC devices had significantly higher push-out strength than the threaded titanium device (p < .001). The push-out forces exceeding 2,500 N were measured for threaded FRC devices with supplementary grooves and BAG coating. No thread failures were observed in any FRC devices. The unthreaded FRC devices with BAG lost 70% of glass particles during the test, while no BAG particles were lost from threaded FRC devices. It can be concluded that threaded FRC devices can withstand high push-out forces in the dental plaster without a risk of thread failure under physiological load.


Subject(s)
Dental Implantation, Endosseous/instrumentation , Dental Implants , Mineral Fibers , Suture Anchors , Weight-Bearing , Implants, Experimental , Materials Testing , Microscopy, Electron, Scanning , Models, Biological
2.
J Biomater Appl ; 19(1): 5-20, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15245640

ABSTRACT

The aim of this study was to examine the release of silica (Si), calcium (Ca), phosphorous (P), and fluoride (F) from conventional glass ionomer cement (GI) and resin-modified glass ionomer cement (LCGI), containing different quantities of bioactive glass (BAG). Further aim was to evaluate in vitro biomineralization of dentine. The release of Si increased with the increasing immersion time from the specimens containing BAG, whereas the amount of Ca and P decreased indicating in vitro bioactivity of the materials. LCGI with 30wt% of BAG showed highest bioactivity. It also showed CaP-like precipitation on both the surface of the test specimens and on the dentin discs immersed with the material. Within the limitations of this study, it can be concluded that a dental restorative material consisting of glass ionomer cements and BAG is bioactive and initiates biomineralization on dentin surface in vitro.


Subject(s)
Calcium/chemistry , Fluorides/chemistry , Glass/chemistry , Phosphorus/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dentin/chemistry , Dentin/ultrastructure , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL