Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1348344, 2024.
Article in English | MEDLINE | ID: mdl-38544980

ABSTRACT

Active components in medicinal plants provide unlimited useful and traditional medicines. Antimicrobial activities are found in secondary metabolites in plant extracts such as argan oil. This experimental investigation aims to determine argan oil's volatile compounds and examine their in vitro antimicrobial properties. In silico simulations, molecular docking, pharmacokinetics, and drug-likeness prediction revealed the processes underlying the in vitro biological possessions. Gas chromatography-mass spectrometry (GC/MS) was used to screen argan oil's primary components. In silico molecular docking studies were used to investigate the ability of the selected bioactive constituents of argan oil to act effectively against Pseudomonas aeruginosa and Staphylococcus aureus (S. aureus) isolated from infections. The goal was to study their ability to interact with both bacteria's essential therapeutic target protein. The 21 chemicals in argan oil were identified by GC/MS. Docking results for all compounds with S. aureus and P. aeruginosa protease proteins ranged from -5 to -9.4 kcal/mol and -5.7 to -9.7 kcal/mol, respectively, compared to reference ligands. Our docking result indicates that the 10-octadecenoic acid, methyl ester was the most significant compound with affinity scores of -9.4 and -9.7 kcal/mol for S. aureus and P. aeruginosa proteins, respectively. The minimal bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) of argan oil were 0.7 ± 0.03 and 0.5 ± 0.01 for S. aureus and 0.4 ± 0.01 and 0.3 ± 0.02 for P. aeruginosa, respectively. We confirmed the antimicrobial properties of argan oil that showed significant growth inhibition for S. aureus and P. aeruginosa.

2.
Poult Sci ; 102(11): 103054, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37729677

ABSTRACT

The present study aims to evaluate the antimicrobial activity (in vitro study) of olive leaves powder (OLP) and its role in improving the broiler productivity, carcass criteria, blood indices, and antioxidant activity. A total of 270 one-day-old broiler chickens were distributed into 6 treatment groups as follows: the first group: basal diet without any supplementation, while the second, third, fourth, fifth, and sixth groups: basal diet supplemented with 50, 75, 100, 125, and 150 (µg/g), respectively. The in vitro study showed that the OLP has good antibacterial activity in the concentration-dependent matter; OLP 175 µg/mL inhibited the tested bacteria in the zones range of (0.8-4 cm), Klebsiella Pneumonaie (KP) was the most resistant bacteria to OLP concentration. The antioxidant activity of OLP increased with increasing the concentration of OLP compared to ascorbic acid, where OLP 175 µg/mL scavenged 91% of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radicals compared to 93% scavenging activity of ascorbic acid. Broiler chickens fed diets with OLP had significantly (P < 0.05) higher body weight (BW) and body weight growth (BWG) than the control birds. The treatment with OLP significantly reduced the feed intake (FI) and feed conversion rate (FCR) when compared to control. Groups supplemented with OLP showed decreased abdominal fat deposition and a significant increase in the net carcass and breast muscle weight. OLP improved birds' blood parameters in comparison with control birds. All pathogenic bacterial numbers in caecal samples were decreased with elevating OLP levels, but the cecal Lactobacillus bacterial count was increased. In conclusion, OLP supplementation improved broiler chickens' performance, carcass traits, and blood parameters. Moreover, OLP improved birds' liver functions (reduced Alanine transaminase [ALT] and aspartate aminotransferase [AST] levels) in comparison with control. In addition, OLP promoted the antioxidant status, minimized the harmful microbial load, and increased beneficial bacterial count in the cecal contents of broilers.

3.
Front Plant Sci ; 14: 1136961, 2023.
Article in English | MEDLINE | ID: mdl-37152127

ABSTRACT

Introduction: Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods: The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion: The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion: These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.

4.
Pediatr Res ; 93(5): 1383-1390, 2023 04.
Article in English | MEDLINE | ID: mdl-36085364

ABSTRACT

BACKGROUND: Given the sparse data on vitamin D status in pediatric COVID-19, we investigated whether vitamin D deficiency could be a risk factor for susceptibility to COVID-19 in Egyptian children and adolescents. We also investigated whether vitamin D receptor (VDR) FokI polymorphism could be a genetic marker for COVID-19 susceptibility. METHODS: One hundred and eighty patients diagnosed to have COVID-19 and 200 matched control children and adolescents were recruited. Patients were laboratory confirmed as SARS-CoV-2 positive by real-time RT-PCR. All participants were genotyped for VDR Fok1 polymorphism by RT-PCR. Vitamin D status was defined as sufficient for serum 25(OH) D at least 30 ng/mL, insufficient at 21-29 ng/mL, deficient at <20 ng/mL. RESULTS: Ninety-four patients (52%) had low vitamin D levels with 74 (41%) being deficient and 20 (11%) had vitamin D insufficiency. Vitamin D deficiency was associated with 2.6-fold increased risk for COVID-19 (OR = 2.6; [95% CI 1.96-4.9]; P = 0.002. The FokI FF genotype was significantly more represented in patients compared to control group (OR = 4.05; [95% CI: 1.95-8.55]; P < 0.001). CONCLUSIONS: Vitamin D deficiency and VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. IMPACT: Vitamin D deficiency could be a modifiable risk factor for COVID-19 in children and adolescents because of its immune-modulatory action. To our knowledge, ours is the first such study to investigate the VDR Fok I polymorphism in Caucasian children and adolescents with COVID-19. Vitamin D deficiency and the VDR Fok I polymorphism may constitute independent risk factors for susceptibility to COVID-19 in Egyptian children and adolescents. Clinical trials should be urgently conducted to test for causality and to evaluate the efficacy of vitamin D supplementation for prophylaxis and treatment of COVID-19 taking into account the VDR polymorphisms.


Subject(s)
COVID-19 , Receptors, Calcitriol , Vitamin D Deficiency , Adolescent , Child , Humans , COVID-19/genetics , Genetic Predisposition to Disease , Genotype , Receptors, Calcitriol/genetics , Risk Factors , SARS-CoV-2 , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics
SELECTION OF CITATIONS
SEARCH DETAIL