Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38668751

ABSTRACT

p-type thin-film transistors (pTFTs) have proven to be a significant impediment to advancing electronics beyond traditional Si-based technology. A recent study suggests that a thin and highly crystalline Te layer shows promise as a channel for high-performance pTFTs. However, achieving this still requires specific conditions, such as a cryogenic growth temperature and an extremely thin channel thickness on the order of a few nanometers. These conditions critically limit the practical feasibility of the fabrication process. Here, we report a high-performance pTFT incorporating a 60-nm-thick highly crystalline Se-Te alloyed channel layer, produced using pulsed laser ablation at room temperature. The Se0.5Te0.5 alloy system enhances crystalline temperature and widens the band gap compared to a pure Te channel. Consequently, this approach results in a field-effect mobility of 3 cm2/V·s, with an on/off current ratio of 3 × 105, a subthreshold slope of 2.1 V/decade, and a turn-on voltage of 6.5 V, achieved through conventional annealing at 250 °C. To demonstrate its applicability in complementary circuit applications, we integrate a complementary-type inverter using a p-type Se0.5Te0.5 TFT and an n-type Al-doped InZnSnO, demonstrating a high voltage gain of 12 and a low static power consumption of 17 nW. This suggests that the Se-Te alloyed channel approach paves the way to a more straightforward and cost-effective process for Te-based pTFT devices and their applications.

2.
Nanomaterials (Basel) ; 10(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635242

ABSTRACT

The solution-processed deposition of metal-oxide semiconducting materials enables the fabrication of large-area and low-cost electronic devices by using printing technologies. Additionally, the simple patterning process of these types of materials become an important issue, as it can simplify the cost and process of fabricating electronics such as thin-film transistors (TFTs). In this study, using the electrohydrodynamic (EHD) jet printing technique, we fabricated directly patterned zinc-tin-oxide (ZTO) semiconductors as the active layers of TFTs. The straight lines of ZTO semiconductors were successfully drawn using a highly soluble and homogeneous solution that comprises zinc acrylate and tin-chloride precursors. Besides, we found the optimum condition for the fabrication of ZTO oxide layers by analyzing the thermal effect in processing. Using the optimized condition, the resulting devices exhibited satisfactory TFT characteristics with conventional electrodes and conducting materials. Furthermore, these metal-oxide TFTs were successfully applied to complementary inverter with conventional p-type organic semiconductor-based TFT, showing high quality of voltage transfer characteristics. Thus, these printed ZTO TFT results demonstrated that solution processable metal-oxide transistors are promising for the realization of a more sustainable and printable next-generation industrial technology.

3.
ACS Appl Mater Interfaces ; 8(8): 5499-508, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26840992

ABSTRACT

Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

4.
Nano Lett ; 15(10): 6309-17, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26280943

ABSTRACT

Crystalline silicon-based complementary metal-oxide-semiconductor transistors have become a dominant platform for today's electronics. For such devices, expensive and complicated vacuum processes are used in the preparation of active layers. This increases cost and restricts the scope of applications. Here, we demonstrate high-performance solution-processed CdSe nanocrystal (NC) field-effect transistors (FETs) that exhibit very high carrier mobilities (over 400 cm(2)/(V s)). This is comparable to the carrier mobilities of crystalline silicon-based transistors. Furthermore, our NC FETs exhibit high operational stability and MHz switching speeds. These NC FETs are prepared by spin coating colloidal solutions of CdSe NCs capped with molecular solders [Cd2Se3](2-) onto various oxide gate dielectrics followed by thermal annealing. We show that the nature of gate dielectrics plays an important role in soldered CdSe NC FETs. The capacitance of dielectrics and the NC electronic structure near gate dielectric affect the distribution of localized traps and trap filling, determining carrier mobility and operational stability of the NC FETs. We expand the application of the NC soldering process to core-shell NCs consisting of a III-V InAs core and a CdSe shell with composition-matched [Cd2Se3](2-) molecular solders. Soldering CdSe shells forms nanoheterostructured material that combines high electron mobility and near-IR photoresponse.

SELECTION OF CITATIONS
SEARCH DETAIL