Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
SLAS Discov ; 24(3): 398-413, 2019 03.
Article in English | MEDLINE | ID: mdl-30616481

ABSTRACT

Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.


Subject(s)
Cooperative Behavior , Drug Discovery/methods , Drug Evaluation, Preclinical , Europe , High-Throughput Screening Assays , Humans , Structure-Activity Relationship
2.
Molecules ; 23(2)2018 Feb 03.
Article in English | MEDLINE | ID: mdl-29401687

ABSTRACT

The synthesis of two protected tetrasaccharide pentenyl glycosides with diarabinan and digalactan branching related to the pectic polysaccharide rhamnogalacturonan I is reported. The strategy relies on the coupling of N-phenyl trifluoroacetimidate disaccharide donors to a common rhamnosyl acceptor. The resulting trisaccharide thioglycosides were finally coupled to an n-pentenyl galactoside acceptor to access the two protected branched tetrasaccharides.


Subject(s)
Chemistry Techniques, Synthetic , Excipients/chemical synthesis , Pectins/chemical synthesis , Polysaccharides/chemical synthesis , Disaccharides/chemistry , Drug Carriers/chemical synthesis , Humans , Imidoesters/chemistry , Thioglycosides/chemistry
3.
Chem Rev ; 117(17): 11337-11405, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28792736

ABSTRACT

Plant cell walls are composed of an intricate network of polysaccharides and proteins that varies during the developmental stages of the cell. This makes it very challenging to address the functions of individual wall components in cells, especially for highly complex glycans. Fortunately, structurally defined oligosaccharides can be used as models for the glycans, to study processes such as cell wall biosynthesis, polysaccharide deposition, protein-carbohydrate interactions, and cell-cell adhesion. Synthetic chemists have focused on preparing such model compounds, as they can be produced in good quantities and with high purity. This Review contains an overview of those plant and algal polysaccharides that have been elucidated to date. The majority of the content is devoted to detailed summaries of the chemical syntheses of oligosaccharide fragments of cellulose, hemicellulose, pectin, and arabinogalactans, as well as glycans unique to algae. Representative synthetic routes within each class are discussed in detail, and the progress in carbohydrate chemistry over recent decades is highlighted.


Subject(s)
Chlorophyta/metabolism , Oligosaccharides/biosynthesis , Plants/metabolism , Rhodophyta/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Cellulose/biosynthesis , Cellulose/chemistry , Oligosaccharides/chemistry , Pectins/biosynthesis , Pectins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL