Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 70(43): 13996-14004, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36278935

ABSTRACT

Sialylated human milk oligosaccharides (SHMOs) possess unique biological activities. Qualitative and quantitative analyses of SHMOs at different lactation stages are limited by interference from neutral oligosaccharides, glycan structural complexity, and low detection sensitivity. Herein, our previously developed glycoqueuing strategy was improved and applied to enable an isomer-specific quantitative comparison of SHMOs between colostrum milk (CM) and mature milk (MM). A total of 49 putative structures were determined, including 1 α2,6-linked and 13 α2,3-linked isomers separated from seven newly discovered SHMO compositions. The content of most oligosaccharides was more than 50% lower in MM than in CM, and α2,3-sialylation was observed in 43.74% of SHMOs from CM and 22.95% of SHMOs from MM. Finally, the fucosylation level of the SHMOs increased from 16.45 to 22.28% with prolonged lactation. These findings provide the basis for further studies on the structure-activity relationship of SHMOs and a blueprint to improve infant formula.


Subject(s)
Milk, Human , Milk , Infant , Female , Pregnancy , Humans , Animals , Colostrum , Lactation , Infant Formula , Breast Feeding , Oligosaccharides
2.
Food Chem ; 339: 127866, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32858386

ABSTRACT

Sialylated N-glycans are an integral component of whey proteins in human milk and play an irreplaceable role in infant growth and development. Currently, there are few studies on quantitative comparison of sialylated N-glycans in milk obtained at different lactation stages. Here, a preliminary isomer-specific quantification of whey sialylated N-glycans of human colostrum milk (CM) and mature milk (MM) was performed by using our recently developed glycoqueuing strategy. Such a preliminary comparison revealed that the whey sialylated N-glycan content was 86.4% lower in MM than in CM. Twenty-three α2,6-linked sialylated N-glycan isomers were detected with no α2,3-linked isomer observed. For the first time, three mono-sialylated and four bi-sialylated glycan isomers were reported. With the prolongation of lactation, the relative abundance of mono-sialylated glycans increased, whilst the relative abundance of bi-sialylated glycans decreased significantly. These findings contribute to the understanding of the structure-function relationship of sialylated N-glycans in the human whey fraction.


Subject(s)
Colostrum/chemistry , Glycoproteins/chemistry , Milk, Human/chemistry , N-Acetylneuraminic Acid/chemistry , Polysaccharides/chemistry , Sequence Analysis , Whey Proteins/chemistry , Animals , Female , Humans , Isomerism , Lactation , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL