Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 9(4): e92400, 2014.
Article in English | MEDLINE | ID: mdl-24705024

ABSTRACT

Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 µM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2) transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2) containing artificial oxalate operon (plac-FpOAR-oah) and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp) secreted 4.8 mM and 5.4 mM oxalic acid, released 329 µM and 351 µM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil.


Subject(s)
Bacterial Proteins/genetics , Hydrolases/genetics , Operon/genetics , Oxalic Acid/metabolism , Phosphates/metabolism , Pseudomonas fluorescens , Truncated Hemoglobins/genetics , Acids/pharmacology , Aspergillus niger/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Coriolaceae/genetics , Hydrolases/metabolism , Hydrolysis , Organisms, Genetically Modified , Phosphorus/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism
2.
Microbiol Res ; 166(1): 36-46, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-20171856

ABSTRACT

Effect of the metabolic load caused by the presence of plasmids on mineral phosphate-solubilizing (MPS) Enterobacter asburiae PSI3, was monitored with four plasmid cloning vectors and one native plasmid, varying in size, nature of the replicon, copy number and antibiotic resistance genes. Except for one plasmid, the presence of all other plasmids in E. asburiae PSI3 resulted in the loss of the MPS phenotype as reflected by the failure to bring about a drop in pH and release soluble P when grown in media containing rock phosphate (RP) as the sole P source. When 100 µM soluble P was supplemented along with RP, the adverse effects of plasmids on MPS phenotype and on growth parameters was reduced for some plasmid bearing derivatives, as monitored in terms of specific growth rates, glucose consumed, gluconic acids yields and P released. When 10 mM of soluble P as the only P source, was added to the medium all transformants showed growth and pH drop comparable with native strain. It may be concluded that different plasmids impose, to varying extents, a metabolic load in the phosphate-solubilizing bacterium E. asburiae PSI3 and results in diminishing its growth and P-solubilizing ability in P deficient conditions.


Subject(s)
Enterobacter/genetics , Enterobacter/metabolism , Gluconates/metabolism , Phosphates/metabolism , Plasmids/genetics , Plasmids/metabolism , DNA, Bacterial , Enterobacter/growth & development , Minerals , Phosphates/chemistry , Rhizosphere , Soil Microbiology , Solubility
3.
J Microbiol Biotechnol ; 20(11): 1491-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21124052

ABSTRACT

Rhizosphere microorganisms possessing phytase activity are considered important for rendering phytate-P available to plants. In the present study, Citrobacter braakii phytase gene (appA) was over-expressed in rhizobacteria possessing plant growth promoting (PGP) traits for increasing their potential as bioinoculants. AppA was cloned under the lac promoter in the broad host-range expression vector pBBR1MCS2. Transformation of the recombinant construct pCBappA resulted in high constitutive phytase activity in all of the eight rhizobacterial strains belonging to genera Pantoea, Citrobacter, Enterobacter, Pseudomonas (two strains), Rhizobium (two strains) and Ensifer that were studied. Transgenic rhizobacterial strains were found to display varying level of phytase activity, ranging from 10 folds to 538 folds higher than the corresponding control strains. Transgenic derivative of Pseudomonas fluorescens CHA0, a well-characterized plant growth promoting rhizobacterium, showed highest expression of phytase (~8 U/ mg) activity in crude extracts. Although all transformants showed high phytase activity, rhizobacteria having ability to secrete organic acid, showed significantly higher release of P from Ca-phytate in buffered minimal media. AppA over-expressing rhizobacteria showed increased P content, dry weight (shoot) or shoot/ root ratio of mung bean (Vigna radiata) plants, to different extents, when grown in semi solid agar (SSA) medium containing Na-phytate or Ca-phytate as the P sources. This is the first report of over-expression of phytase in rhizobacterial strains and its exploitation for plant growth enhancement.


Subject(s)
6-Phytase/genetics , Bacteria/genetics , Bacterial Proteins/genetics , Citrobacter/enzymology , Fabaceae/metabolism , Phosphorus/metabolism , Phytic Acid/metabolism , Rhizosphere , 6-Phytase/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Fabaceae/growth & development , Fabaceae/microbiology , Gene Expression , Soil Microbiology , Transformation, Bacterial
4.
Res Microbiol ; 159(9-10): 635-42, 2008.
Article in English | MEDLINE | ID: mdl-18996187

ABSTRACT

Most phosphate-solubilizing bacteria (PSB), including the Pseudomonas species, release P from sparingly soluble mineral phosphates by producing high levels of gluconic acid from extracellular glucose, in a reaction catalyzed by periplasmic glucose dehydrogenase, which is an integral component of glucose catabolism of pseudomonads. To investigate the differences in the glucose metabolism of gluconic acid-producing PSB pseudomonads and low gluconic acid-producing/non-PSB strains, several parameters pertaining to growth and glucose utilization under P-sufficient and P-deficient conditions were monitored for the PSB isolate Pseudomonas aeruginosa P4 (producing approximately 46 mM gluconic acid releasing 437 microM P) and non-PSB P. fluorescens 13525. Our results show interesting differences in the channeling of glucose towards gluconate and other catabolic end-products like pyruvate and acetate with respect to P status for both strains. However, PSB strain P. aeruginosa P4, apart from exhibiting better growth under both low and high Pi conditions, differed from P. fluorescens 13525 in its ability to accumulate gluconate under P-solubilizing conditions. These alterations in growth, glucose utilization and acid secretion are correlated with glucose dehydrogenase, glucose-6-phosphate dehydrogenase and pyruvate carboxylase activities. The ability to shift glucose towards a direct oxidative pathway under P deficiency is speculated to underlie the differential gluconic acid-mediated P-solubilizing ability observed amongst pseudomonads.


Subject(s)
Gluconates/metabolism , Glucose/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Pseudomonas aeruginosa/growth & development , Pseudomonas fluorescens/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Culture Media , Hydrogen-Ion Concentration , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Pseudomonas fluorescens/enzymology , Pseudomonas fluorescens/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL