Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biology (Basel) ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36138767

ABSTRACT

Aquaculture has been expanding in Malaysia due to the increased demand for fish products. In addition, aquaculture faces challenges in maintaining feed suitability in support of the global growth of fish production. Therefore, improvements in diet formulation are necessary to achieve the optimal requirements and attain a desirable growth efficiency and health performance in fish. Seven weeks of study were conducted to compare the equal amounts of different fatty acids (2%) (oleic acid, stearic acid, palmitic acid, and behenic acid) on the survival, the growth, and the immune response of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) against V. vulnificus. After six weeks of the feeding trial, fish were challenged with V. vulnificus for 30 min before continuing on the same feeding regime for the next seven days (post-bacterial challenge). Fish supplemented with dietary oleic acid showed significantly (p < 0.05) enhanced immune responses, i.e., lysozyme, respiratory burst, and phagocytic activities compared to the control diet group for both pre-and post-bacterial challenges. Following the Vibrio challenge, no significant effects of supplemented fatty acid diets on survival rate were observed, although dietary oleic acid demonstrated the highest 63.3% survival rate compared to only 43.3% of the control diet group. In addition, there were no significant effects (p > 0.05) on specific growth rate (SGR), white blood cell (WBC), and red blood cell (RBC) counts among all experimental diets. The results from this study suggest that among the tested dietary fatty acids, the oleic acid diet showed promising results in the form of elevated immune responses and increased disease resistance of the hybrid grouper fingerlings challenged with V. vulnificus.

2.
3 Biotech ; 12(9): 206, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35935547

ABSTRACT

Epinephelus fuscoguttatus is economically crucial to various Southeast Asia countries where they are reared in fish farms to meet the demand for supply. However, a systemic infectious disease known as vibriosis has steadily and extensively affected the fish farming industry. The disease is caused by Vibrio spp., which are pathogenic gram-negative bacteria. This study focused on understanding the host's metabolic adaptation against Vibrio vulnificus infection, which features a survival phenotype, by profiling the metabolites in grouper fingerlings that survived the experimental infection. Mapping of the pathways is crucial to explain the roles of metabolites in fish immunity. A solvent extraction method was used on the grouper's immune organs (gills, liver and spleen) prior to Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-qTOF-MS) analysis. The metabolites identified in fingerlings that survived experimental infections were mostly amino acids (primary metabolites). Glutamine (0.44%), alanine (0.68%), phenylalanine (2.63%) and tyrosine (2.60%) were highly abundant in survived-infected gills. Aspartic acid (13.57%) and leucine (4.01%) were highly abundant in the livers of the survived-infected fish and lysine was highly abundant in both gills (2.94%) and liver (3.64%) of the survived-infected fish. Subsequent bioinformatics analysis revealed the involvement of the identified functional amino acids in various immune-related pathways. The current findings facilitate the comprehension of the metabolic adaptation of grouper fingerlings that exhibited a survival phenotype against Vibrio infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03269-1.

SELECTION OF CITATIONS
SEARCH DETAIL