Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Am Heart J ; 273: 72-82, 2024 07.
Article in English | MEDLINE | ID: mdl-38621575

ABSTRACT

BACKGROUND: The reduction in cardiovascular disease (CVD) events with edetate disodium (EDTA) in the Trial to Assess Chelation Therapy (TACT) suggested that chelation of toxic metals might provide novel opportunities to reduce CVD in patients with diabetes. Lead and cadmium are vasculotoxic metals chelated by EDTA. We present baseline characteristics for participants in TACT2, a randomized, double-masked, placebo-controlled trial designed as a replication of the TACT trial limited to patients with diabetes. METHODS: TACT2 enrolled 1,000 participants with diabetes and prior myocardial infarction, age 50 years or older between September 2016 and December 2020. Among 959 participants with at least one infusion, 933 had blood and/or urine metals measured at the Centers for Diseases Control and Prevention using the same methodology as in the National Health and Nutrition Examination Survey (NHANES). We compared metal levels in TACT2 to a contemporaneous subset of NHANES participants with CVD, diabetes and other inclusion criteria similar to TACT2's participants. RESULTS: At baseline, the median (interquartile range, IQR) age was 67 (60, 72) years, 27% were women, 78% reported white race, mean (SD) BMI was 32.7 (6.6) kg/m2, 4% reported type 1 diabetes, 46.8% were treated with insulin, 22.3% with GLP1-receptor agonists or SGLT-2 inhibitors, 90.2% with aspirin, warfarin or P2Y12 inhibitors, and 86.5% with statins. Blood lead was detectable in all participants; median (IQR) was 9.19 (6.30, 13.9) µg/L. Blood and urine cadmium were detectable in 97% and median (IQR) levels were 0.28 (0.18, 0.43) µg/L and 0.30 (0.18, 0.51) µg/g creatinine, respectively. Metal levels were largely similar to those in the contemporaneous NHANES subset. CONCLUSIONS: TACT2 participants were characterized by high use of medication to treat CVD and diabetes and similar baseline metal levels as in the general US population. TACT2 will determine whether chelation therapy reduces the occurrence of subsequent CVD events in this high-risk population. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov. Identifier: NCT02733185. https://clinicaltrials.gov/study/NCT02733185.


Subject(s)
Chelation Therapy , Humans , Female , Male , Middle Aged , Aged , Chelation Therapy/methods , Double-Blind Method , Edetic Acid/therapeutic use , Lead/blood , Lead/urine , Cadmium/urine , Cadmium/blood , Chelating Agents/therapeutic use , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/blood
2.
J Expo Sci Environ Epidemiol ; 34(1): 77-89, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37558699

ABSTRACT

BACKGROUND: Chronic exposure to inorganic arsenic (As) and uranium (U) in the United States (US) occurs from unregulated private wells and federally regulated community water systems (CWSs). The contribution of water to total exposure is assumed to be low when water As and U concentrations are low. OBJECTIVE: We examined the contribution of water As and U to urinary biomarkers in the Strong Heart Family Study (SHFS), a prospective study of American Indian communities, and the Multi-Ethnic Study of Atherosclerosis (MESA), a prospective study of racially/ethnically diverse urban U.S. communities. METHODS: We assigned residential zip code-level estimates in CWSs (µg/L) and private wells (90th percentile probability of As >10 µg/L) to up to 1485 and 6722 participants with dietary information and urinary biomarkers in the SHFS (2001-2003) and MESA (2000-2002; 2010-2011), respectively. Urine As was estimated as the sum of inorganic and methylated species, and urine U was total uranium. We used linear mixed-effects models to account for participant clustering and removed the effect of dietary sources via regression adjustment. RESULTS: The median (interquartile range) urine As was 5.32 (3.29, 8.53) and 6.32 (3.34, 12.48) µg/L for SHFS and MESA, respectively, and urine U was 0.037 (0.014, 0.071) and 0.007 (0.003, 0.018) µg/L. In a meta-analysis across both studies, urine As was 11% (95% CI: 3, 20%) higher and urine U was 35% (5, 73%) higher per twofold higher CWS As and U, respectively. In the SHFS, zip-code level factors such as private well and CWS As contributed 46% of variation in urine As, while in MESA, zip-code level factors, e.g., CWS As and U, contribute 30 and 49% of variation in urine As and U, respectively. IMPACT STATEMENT: We found that water from unregulated private wells and regulated CWSs is a major contributor to urinary As and U (an estimated measure of internal dose) in both rural, American Indian populations and urban, racially/ethnically diverse populations nationwide, even at levels below the current regulatory standard. Our findings indicate that additional drinking water interventions, regulations, and policies can have a major impact on reducing total exposures to As and U, which are linked to adverse health effects even at low levels.


Subject(s)
Arsenic , Atherosclerosis , Uranium , Adult , Humans , Water , Prospective Studies , Biomarkers
3.
Anal Methods ; 16(2): 214-226, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38099473

ABSTRACT

Analysis of essential and non-essential trace elements in urine has emerged as a valuable tool for assessing occupational and environmental exposures, diagnosing nutritional status and guiding public health and health care intervention. Our study focused on the analysis of trace elements in urine samples from the Multi-Ethnic Study of Atherosclerosis (MESA), a precious resource for health research with limited sample volumes. Here we provide a comprehensive and sensitive method for the analysis of 18 elements using only 100 µL of urine. Method sensitivity, accuracy, and precision were assessed. The analysis by inductively coupled plasma mass spectrometry (ICP-MS) included the measurement of antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), cobalt (Co), copper (Cu), gadolinium (Gd), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), and zinc (Zn). Further, we reported urinary trace element concentrations by covariates including gender, ethnicity/race, smoking and location. The results showed good accuracy and sensitivity of the ICP-MS method with the limit of detections rangings between 0.001 µg L-1 for U to 6.2 µg L-1 for Zn. Intra-day precision for MESA urine analysis varied between 1.4% for Mo and 26% for Mn (average 6.4% for all elements). The average inter-day precision for most elements was <8.5% except for Gd (20%), U (16%) and Mn (19%) due to very low urinary concentrations. Urinary mean concentrations of non-essential elements followed the order of Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The order of urinary mean concentrations for essential trace elements was Zn > Se > Mo > Cu > Co > Mn. Non-adjusted mean concentration of non-essential trace elements in urine from MESA participants follow the order Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The unadjusted urinary mean concentrations of essential trace elements decrease from Zn > Se > Mo > Cu > Co > Mn.


Subject(s)
Arsenic , Selenium , Trace Elements , Humans , Trace Elements/urine , Cadmium , Lead , Manganese/urine , Arsenic/urine , Nickel , Zinc , Epidemiologic Studies , Molybdenum , Cobalt
4.
PLoS One ; 18(12): e0296238, 2023.
Article in English | MEDLINE | ID: mdl-38128021

ABSTRACT

OBJECTIVES: To examine the associations of dietary Mg intake with inflammatory biomarkers (C-reactive protein (CRP) and interleukin 6 (IL-6)), and the interaction of dietary Mg intake with single nucleotide polymorphism (SNP) rs3740393, a SNP related to Mg metabolism and transport, on CRP and IL-6 among American Indians (AIs). METHODS: This cross-sectional study included AI participants (n = 1,924) from the Strong Heart Family Study (SHFS). Mg intake from foods and dietary supplements was ascertained using a 119-item Block food frequency questionnaire, CRP and IL-6 were measured from blood, and SNP rs3740393 was genotyped using MetaboChip. Generalized estimating equations were used to examine associations of Mg intake, and the interaction between rs3740393 and dietary Mg, with CRP and IL-6. RESULTS: Reported Mg intake was not associated with CRP or IL-6, irrespective of genotype. A significant interaction (p-interaction = 0.018) was observed between Mg intake and rs3740393 on IL-6. Among participants with the C/C genotype, for every 1 SD higher in log-Mg, log-IL-6 was 0.04 (95% CI: -0.10 to 0.17) pg/mL higher. Among participants with the C/G genotype, for every 1 SD higher in log-Mg, log-IL-6 was 0.08 (95% CI: -0.21 to 0.05) pg/mL lower, and among participants with the G/G genotype, for every 1 SD higher in log-Mg, log-IL-6 was 0.19 (95% CI: -0.38 to -0.01) pg/mL lower. CONCLUSIONS: Mg intake may be associated with lower IL-6 with increasing dosage of the G allele at rs3740393. Future research is necessary to replicate this finding and examine other Mg-related genes that influence associations of Mg intake with inflammation.


Subject(s)
C-Reactive Protein , Interleukin-6 , Humans , C-Reactive Protein/metabolism , Interleukin-6/genetics , Magnesium , Cross-Sectional Studies , Biomarkers
5.
Curr Environ Health Rep ; 10(4): 353-368, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37665544

ABSTRACT

PURPOSE OF REVIEW: Metals and metalloids are known for their nutritional as well as toxic effects in humans. In the context of the SARS-CoV-2 pandemic, understanding the role of metals on COVID-19 infection is becoming important due to their role in infectious diseases. During the past 2 years, a significant number of studies have examined the impact of metals and metalloids on COVID-19 morbidity and mortality. We conducted a systematic review of peer-reviewed manuscripts on the association of metals and metalloids with SARS-CoV-2 infection and COVID-19 severity published since the onset of the pandemic. RECENT FINDINGS: We searched for epidemiological studies available through the PubMed database published from January 2020 to December 2022. Of 92 studies identified, 20 met our inclusion criteria. These articles investigated the association of zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), cadmium (Cd), arsenic (As), copper (Cu), magnesium (Mg), chromium (Cr), and/or lead (Pb) levels on SARS-CoV-2 infection and/or COVID-19 severity. Of the ten metals and metalloids of interest that reported either positive, negative, or no associations, Zn yielded the highest number of articles (n = 13), followed by epidemiological studies on Se (n = 7) and Fe (n = 5). Elevated serum Zn and Se were associated with reduced COVID-19 severity and mortality. Similarly, higher levels of serum Fe were associated with lower levels of cellular damage and symptoms of SARS-CoV-2 infection and with faster recovery from COVID-19. On the other hand, higher serum and urinary Cu and serum Mg levels were associated with higher COVID-19 severity and mortality. Along with the positive or negative effects, some studies reported no impact of metals on SARS-CoV-2 infection. This systematic review suggests that metals, particularly Zn, Fe, and Se, may help reduce the severity of COVID-19, while Cu and Mg may aggravate it. Our review suggests that future pandemic mitigation strategies may evaluate the role of Zn, Se, and Fe as potential therapeutic interventions.


Subject(s)
COVID-19 , Metalloids , Metals, Heavy , Selenium , Humans , COVID-19/epidemiology , SARS-CoV-2 , Metals , Zinc , Cadmium , Epidemiologic Studies
6.
Environ Int ; 178: 108064, 2023 08.
Article in English | MEDLINE | ID: mdl-37364305

ABSTRACT

INTRODUCTION: Native American communities suffer disproportionately from elevated metal exposures and increased risk for cardiovascular diseases and diabetes. DNA methylation is a sensitive biomarker of aging-related processes and novel epigenetic-based "clocks" can be used to estimate accelerated biological aging that may underlie increased risk. Metals alter DNA methylation, yet little is known about their individual and combined impact on epigenetic age acceleration. Our objective was to investigate the associations of metals on several DNA methylation-based aging measures in the Strong Heart Study (SHS) cohort. METHODS: Blood DNA methylation data from 2,301 SHS participants was used to calculate age acceleration of epigenetic clocks (PhenoAge, GrimAge, DunedinPACE, Hannum, Horvath). Urinary metals [arsenic (As), cadmium (Cd), tungsten (W), zinc (Zn), selenium (Se), molybdenum (Mo)] were creatinine-adjusted and categorized into quartiles. We examined associations of individual metals through linear regression models and used Bayesian Kernel Machine Regression (BKMR) for the impact of the total metal mixture on epigenetic age acceleration. RESULTS: The mixture of nonessential metals (W, As, Cd) was associated with greater GrimAge acceleration and DunedinPACE, while the essential metal mixture (Se, Zn, Mo) was associated with lower epigenetic age acceleration. Cd was associated with increased epigenetic age acceleration across all clocks and BKMR analysis suggested nonlinear associations between Se and DunedinPACE, GrimAge, and PhenoAge acceleration. No interactions between individual metals were observed. The associations between Cd, Zn, and epigenetic age acceleration were greater in never smokers in comparison to current/former smokers. CONCLUSION: Nonessential metals were positively associated with greater epigenetic age acceleration, with strongest associations observed between Cd and DunedinPACE and GrimAge acceleration. In contrast, essential metals were associated with lower epigenetic aging. Examining the influence of metal mixtures on epigenetic age acceleration can provide insight into metals and aging-related diseases.


Subject(s)
Aging , DNA Methylation , Metals , Humans , Aging/genetics , American Indian or Alaska Native , Arsenic , Bayes Theorem , Cadmium , Epigenesis, Genetic , Metals/toxicity , Selenium , Zinc
7.
Curr Environ Health Rep ; 10(3): 215-249, 2023 09.
Article in English | MEDLINE | ID: mdl-37337116

ABSTRACT

PURPOSE OF REVIEW: Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS: We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.


Subject(s)
Arsenic , Mercury , Selenium , Uranium , Pregnancy , Female , Humans , Cadmium , Manganese , Nickel , Barium , Tin , Zinc , Biomarkers
8.
Environ Health Perspect ; 131(3): 37015, 2023 03.
Article in English | MEDLINE | ID: mdl-36976258

ABSTRACT

BACKGROUND: Chronic arsenic (As) exposure is a global environmental health issue. Inorganic As (InAs) undergoes methylation to monomethyl (MMAs) and dimethyl-arsenical species (DMAs); full methylation to DMAs facilitates urinary excretion and is associated with reduced risk for As-related health outcomes. Nutritional factors, including folate and creatine, influence one-carbon metabolism, the biochemical pathway that provides methyl groups for As methylation. OBJECTIVE: Our aim was to investigate the effects of supplementation with folic acid (FA), creatine, or the two combined on the concentrations of As metabolites and the primary methylation index (PMI: MMAs/InAs) and secondary methylation index (SMI: DMAs/MMAs) in blood in Bangladeshi adults having a wide range of folate status. METHODS: In a randomized, double-blinded, placebo (PBO)-controlled trial, 622 participants were recruited independent of folate status and assigned to one of five treatment arms: a) PBO (n=102), b) 400µg FA/d (400FA; n=153), c) 800µg FA/d (800FA; n=151), d) 3g creatine/d (creatine; n=101), or e) 3g creatine+400µg of FA/d (creatine+400FA; n=103) for 12 wk. For the following 12 wk, half of the FA participants were randomly switched to the PBO while the other half continued FA supplementation. All participants received As-removal water filters at baseline. Blood As (bAs) metabolites were measured at weeks 0, 1, 12, and 24. RESULTS: At baseline, 80.3% (n=489) of participants were folate sufficient (≥9 nmol/L in plasma). In all groups, bAs metabolite concentrations decreased, likely due to filter use; for example, in the PBO group, blood concentrations of MMAs (bMMAs) (geometric mean±geometric standard deviation) decreased from 3.55±1.89µg/L at baseline to 2.73±1.74 at week 1. After 1 wk, the mean within-person increase in SMI for the creatine+400FA group was greater than that of the PBO group (p=0.05). The mean percentage decrease in bMMAs between baseline and week 12 was greater for all treatment groups compared with the PBO group [400FA: -10.4 (95% CI: -11.9, -8.75), 800FA: -9.54 (95% CI: -11.1, -7.97), creatine: -5.85 (95% CI: -8.59, -3.03), creatine+400FA: -8.44 (95% CI: -9.95, -6.90), PBO: -2.02 (95% CI: -4.03, 0.04)], and the percentage increase in blood DMAs (bDMAs) concentrations for the FA-treated groups significantly exceeded that of PBO [400FA: 12.8 (95% CI: 10.5, 15.2), 800FA: 11.3 (95% CI: 8.95, 13.8), creatine+400FA: 7.45 (95% CI: 5.23, 9.71), PBO: -0.15 (95% CI: -2.85, 2.63)]. The mean decrease in PMI and increase in SMI in all FA groups significantly exceeded PBO (p<0.05). Data from week 24 showed evidence of a reversal of treatment effects on As metabolites from week 12 in those who switched from 800FA to PBO, with significant decreases in SMI [-9.0% (95% CI: -3.5, -14.8)] and bDMAs [-5.9% (95% CI: -1.8, -10.2)], whereas PMI and bMMAs concentrations continued to decline [-7.16% (95% CI: -0.48, -14.3) and -3.1% (95% CI: -0.1, -6.2), respectively] for those who remained on 800FA supplementation. CONCLUSIONS: FA supplementation lowered bMMAs and increased bDMAs in a sample of primarily folate-replete adults, whereas creatine supplementation lowered bMMAs. Evidence of the reversal of treatment effects on As metabolites following FA cessation suggests short-term benefits of supplementation and underscores the importance of long-term interventions, such as FA fortification. https://doi.org/10.1289/EHP11270.


Subject(s)
Arsenic , Folic Acid , Adult , Humans , Arsenic/urine , Creatine/therapeutic use , Creatine/metabolism , Methylation , Dietary Supplements
9.
Environ Pollut ; 318: 120851, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36509352

ABSTRACT

The nephrotoxicity of low-chronic metal exposures is unclear, especially considering several metals simultaneously. We assessed the individual and joint association of metals with longitudinal change in renal endpoints in Aragon Workers Health Study participants with available measures of essential (cobalt [Co], copper [Cu], molybdenum [Mo] and zinc [Zn]) and non-essential (As, barium [Ba], Cd, chromium [Cr], antimony [Sb], titanium [Ti], uranium [U], vanadium [V] and tungsten [W]) urine metals and albumin-to-creatinine ratio (ACR) (N = 707) and estimated glomerular filtration rate (eGFR) (N = 1493) change. Median levels were 0.24, 7.0, 18.6, 295, 3.1, 1.9, 0.28, 1.16, 9.7, 0.66, 0.22 µg/g for Co, Cu, Mo, Zn, As, Ba, Cd, Cr, Sb, Ti, V and W, respectively, and 52.5 and 27.2 ng/g for Sb and U, respectively. In single metal analysis, higher As, Cr and W concentrations were associated with increasing ACR annual change. Higher Zn, As and Cr concentrations were associated with decreasing eGFR annual change. The shape of the longitudinal dose-responses, however, was compatible with a nephrotoxic role for all metals, both in ACR and eGFR models. In joint metal analysis, both higher mixtures of Cu-Zn-As-Ba-Ti-U-V-W and Co-Cd-Cr-Sb-V-W showed associations with increasing ACR and decreasing eGFR annual change. As and Cr were main drivers of the ACR change joint metal association. For the eGFR change joint metal association, while Zn and Cr were main drivers, other metals also contributed substantially. We identified potential interactions for As, Zn and W by other metals with ACR change, but not with eGFR change. Our findings support that Zn, As, Cr and W and suggestively other metals, are nephrotoxic at relatively low exposure levels. Metal exposure reduction and mitigation interventions may improve prevention and decrease the burden of renal disease in the population.


Subject(s)
Cadmium , Uranium , Middle Aged , Adult , Humans , Albuminuria , Spain/epidemiology , Chromium , Zinc , Cobalt , Molybdenum , Titanium , Barium
10.
Rev Esp Cardiol ; 75(12): 1050-1058, 2022 Dec.
Article in Spanish | MEDLINE | ID: mdl-36570815

ABSTRACT

The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.

11.
Nat Commun ; 13(1): 7461, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36460659

ABSTRACT

There is no safe level of exposure to inorganic arsenic or uranium, yet recent studies identified sociodemographic and regional inequalities in concentrations of these frequently detected contaminants in public water systems across the US. We analyze the county-level association between racial/ethnic composition and public water arsenic and uranium concentrations from 2000-2011 using geospatial models. We find that higher proportions of Hispanic/Latino and American Indian/Alaskan Native residents are associated with significantly higher arsenic and uranium concentrations. These associations differ in magnitude and direction across regions; higher proportions of non-Hispanic Black residents are associated with higher arsenic and uranium in regions where concentrations of these contaminants are high. The findings from this nationwide geospatial analysis identifying racial/ethnic inequalities in arsenic and uranium concentrations in public drinking water across the US can advance environmental justice initiatives by informing regulatory action and financial and technical support to protect communities of color.


Subject(s)
Arsenic , Drinking Water , Uranium , Humans , Arsenic/toxicity , Racial Groups , Ethnicity
12.
Rev Esp Cardiol (Engl Ed) ; 75(12): 1050-1058, 2022 Dec.
Article in English, Spanish | MEDLINE | ID: mdl-35931285

ABSTRACT

The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Environmental Pollutants , Myocardial Infarction , Humans , United States , Chelation Therapy/adverse effects , Chelation Therapy/methods , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Chelating Agents/therapeutic use , Diabetes Mellitus/drug therapy , Metals , Myocardial Infarction/complications
13.
Environ Res ; 215(Pt 3): 114101, 2022 12.
Article in English | MEDLINE | ID: mdl-35977585

ABSTRACT

BACKGROUND: Many American Indian (AI) communities are in areas affected by environmental contamination, such as toxic metals. However, studies assessing exposures in AI communities are limited. We measured blood metals in AI communities to assess historical exposure and identify participant characteristics associated with these levels in the Strong Heart Study (SHS) cohort. METHOD: Archived blood specimens collected from participants (n = 2014, all participants were 50 years of age and older) in Arizona, Oklahoma, and North and South Dakota during SHS Phase-III (1998-1999) were analyzed for cadmium, lead, manganese, mercury, and selenium using inductively coupled plasma triple quadrupole mass spectrometry. We conducted descriptive analyses for the entire cohort and stratified by selected subgroups, including selected demographics, health behaviors, income, waist circumference, and body mass index. Bivariate associations were conducted to examine associations between blood metal levels and selected socio-demographic and behavioral covariates. Finally, multivariate regression models were used to assess the best model fit that predicted blood metal levels. FINDINGS: All elements were detected in 100% of study participants, with the exception of mercury (detected in 73% of participants). The SHS population had higher levels of blood cadmium and manganese than the general U.S. population 50 years and older. The median blood mercury in the SHS cohort was at about 30% of the U.S. reference population, potentially due to low fish consumption. Participants in North Dakota and South Dakota had the highest blood cadmium, lead, manganese, and selenium, and the lowest total mercury levels, even after adjusting for covariates. In addition, each of the blood metals was associated with selected demographic, behavioral, income, and/or weight-related factors in multivariate models. These findings will help guide the tribes to develop education, outreach, and strategies to reduce harmful exposures and increase beneficial nutrient intake in these AI communities.


Subject(s)
American Indian or Alaska Native , Cadmium , Lead , Manganese , Mercury , Selenium , Cadmium/blood , Humans , Lead/blood , Manganese/blood , Mercury/blood , Middle Aged , Selenium/blood , American Indian or Alaska Native/statistics & numerical data
14.
Environ Res ; 213: 113647, 2022 10.
Article in English | MEDLINE | ID: mdl-35691383

ABSTRACT

BACKGROUND & AIMS: Chronic liver disease is a growing health burden worldwide. Chronic metal exposures may be associated with non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate the association of blood cadmium (Cd), mercury (Hg), lead (Pb), manganese (Mn), and selenium (Se) with two hallmark features of NAFLD: liver steatosis and fibrosis in the general U.S. METHODS: We analyzed transient liver elastography data from participants of the National Health and Nutrition Examination Survey (NHANES) 2017-18, using ordinal logistic regression analyses to evaluate the cross-sectional association between blood metal concentrations and clinical stages of steatosis and fibrosis. We applied survey weights, strata, and primary sampling units and analyses were conducted using the R survey package. RESULTS: 4,154 participants were included. Median (IQR) for blood Mn and blood Se were 9.28 (7.48-11.39) and 191.08 (176.55-207.16) µg/L, respectively. Per interquartile range increase of natural log transformed blood Mn, the adjusted odds ratio (OR) (95% CI) was 1.59 (1.13-2.23) for a higher grade of steatosis and 1.16 (0.67-2.00) for liver fibrosis. The corresponding OR for steatosis was 2.00 (1.24-3.24) and 2.14 (1.04-4.42) in Black and Mexican American participants, respectively. The corresponding OR for liver fibrosis was 2.96 (1.42-6.17) for females. Per interquartile range increase of natural log transformed blood Se, the adjusted OR was 2.25 (1.30-3.89) for steatosis but 0.31 (0.13-0.72) for liver fibrosis. The inverse association of blood Se with liver fibrosis was also observed in males and White participants. Blood Cd, Hg, and Pb were not associated with liver steatosis and fibrosis in fully-adjusted models overall. CONCLUSIONS: In NHANES 2017-18, higher blood Mn was positively associated with liver steatosis, and higher Se was positively associated with liver steatosis but negatively associated with liver fibrosis. Longitudinal studies are needed to examine the association of Mn and Se with fibrosis progression.


Subject(s)
Mercury , Non-alcoholic Fatty Liver Disease , Selenium , Cadmium , Cross-Sectional Studies , Female , Humans , Lead , Liver Cirrhosis/chemically induced , Liver Cirrhosis/epidemiology , Male , Manganese/toxicity , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/epidemiology , Nutrition Surveys
15.
Am Heart J ; 252: 1-11, 2022 10.
Article in English | MEDLINE | ID: mdl-35598636

ABSTRACT

BACKGROUND: Intravenous edetate disodium-based infusions reduced cardiovascular events in a prior clinical trial. The Trial to Assess Chelation Therapy 2 (TACT2) will replicate the initial study design. METHODS: TACT2 is an NIH-sponsored, randomized, 2x2 factorial, double masked, placebo-controlled, multicenter clinical trial testing 40 weekly infusions of a multi-component edetate disodium (disodium ethylenediamine tetra-acetic acid, or Na2EDTA)-based chelation solution and twice daily oral, high-dose multivitamin and mineral supplements in patients with diabetes and a prior myocardial infarction (MI). TACT2 completed enrollment of 1000 subjects in December 2020, and infusions in December 2021. Subjects are followed for 2.5 to 5 years. The primary endpoint is time to first occurrence of all-cause mortality, MI, stroke, coronary revascularization, or hospitalization for unstable angina. The trial has >;85% power to detect a 30% relative reduction in the primary endpoint. TACT2 also includes a Trace Metals and Biorepository Core Lab, to test whether benefits of treatment, if present, are due to chelation of lead and cadmium from patients. Design features of TACT2 were chosen to replicate selected features of the first TACT, which demonstrated a significant reduction in cardiovascular outcomes in the EDTA chelation arm compared with placebo among patients with a prior MI, with the largest effect in patients with diabetes. RESULTS: Results are expected in 2024. CONCLUSION: TACT2 may provide definitive evidence of the benefit of edetate disodiumbased chelation on cardiovascular outcomes, as well as the clinical importance of longitudinal changes in toxic metal levels of participants.


Subject(s)
Diabetes Mellitus , Myocardial Infarction , Chelating Agents/therapeutic use , Chelation Therapy/methods , Diabetes Mellitus/drug therapy , Double-Blind Method , Edetic Acid/therapeutic use , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/epidemiology , Vitamins
16.
Lancet Planet Health ; 6(4): e320-e330, 2022 04.
Article in English | MEDLINE | ID: mdl-35397220

ABSTRACT

BACKGROUND: The US Environmental Protection Agency (EPA) currently sets maximum contaminant levels (MCLs) for ten metals or metalloids in public drinking water systems. Our objective was to estimate metal concentrations in community water systems (CWSs) across the USA, to establish if sociodemographic or regional inequalities in the metal concentrations exist, and to identify patterns of concentrations for these metals as a mixture. METHODS: We evaluated routine compliance monitoring records for antimony, arsenic, barium, beryllium, cadmium, chromium, mercury, selenium, thallium, and uranium, collected from 2006-11 (2000-11 for uranium; timeframe based on compliance monitoring requirements) by the US EPA in support of their second and third Six-Year Reviews for CWSs. Arsenic, barium, chromium, selenium, and uranium (detectable in >10% records) were included in the main analyses (subgroup and metal mixture analyses; arsenic data reported previously). We compared the mean, 75th percentile, and 95th percentile contaminant concentrations and the percentage of CWSs with concentrations exceeding the MCL across subgroups (region, sociodemographic county-cluster, size of population served, source water type, and CWSs exclusively serving correctional facilities). We evaluated patterns in CWS metal concentration estimate profiles via hierarchical cluster analysis. We created an online interactive map and dashboard of estimated CWS metal concentrations for use in future analyses. FINDINGS: Average metal concentrations were available for a total of 37 915 CWSs across the USA. The total number of monitoring records available was approximately 297 000 for arsenic, 165 000 for barium, 167 000 for chromium, 165 000 for selenium, and 128 000 for uranium. The percentage of analysed CWSs with average concentrations exceeding the MCL was 2·6% for arsenic (MCL=10 µg/L; nationwide mean 1·77 µg/L; n=36 798 CWSs), 2·1% for uranium (MCL=30 µg/L; nationwide mean 4·37 µg/L; n=14 503 CWSs), and less than 0·1% for the other metals. The number of records with detections was highest for uranium (63·1%). 75th and 95th percentile concentrations for uranium, chromium, barium, and selenium were highest for CWSs serving Semi-Urban, Hispanic communities, CWSs reliant on groundwater, and CWSs in the Central Midwest. Hierarchical cluster analysis revealed two distinct clusters: an arsenic-uranium-selenium cluster and a barium-chromium cluster. INTERPRETATIONS: Uranium is an under-recognised contaminant in CWSs. Metal concentrations (including uranium) are elevated in CWSs serving Semi-Urban, Hispanic communities independent of location or region, highlighting environmental justice concerns. FUNDING: US National Institutes of Health Office of the Director, US National Institutes for Environmental Health Sciences, and US National Institute of Dental and Craniofacial Research.


Subject(s)
Arsenic , Selenium , Uranium , Water Pollutants, Chemical , Arsenic/analysis , Barium , Chromium/analysis , Cross-Sectional Studies , Uranium/analysis , Water , Water Pollutants, Chemical/analysis
17.
J Am Heart Assoc ; 11(6): e024648, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35229619

ABSTRACT

Background EDTA is an intravenous chelating agent with high affinity to divalent cations (lead, cadmium, and calcium) that may be beneficial in the treatment of cardiovascular disease (CVD). Although a large randomized clinical trial showed benefit, smaller studies were inconsistent. We conducted a systematic review of published studies to examine the effect of repeated EDTA on clinical outcomes in adults with CVD. Methods and Results We searched 3 databases (MEDLINE, Embase, and Cochrane) from database inception to October 2021 to identify all studies involving EDTA treatment in patients with CVD. Predetermined outcomes included mortality, disease severity, plasma biomarkers of disease chronicity, and quality of life. Twenty-four studies (4 randomized clinical trials, 15 prospective before/after studies, and 5 retrospective case series) assessed the use of repeated EDTA chelation treatment in patients with preexistent CVD. Of these, 17 studies (1 randomized clinical trial) found improvement in their respective outcomes following EDTA treatment. The largest improvements were observed in studies with high prevalence of participants with diabetes and/or severe occlusive arterial disease. A meta-analysis conducted with 4 studies reporting ankle-brachial index indicated an improvement of 0.08 (95% CI, 0.06-0.09) from baseline. Conclusions Overall, 17 studies suggested improved outcomes, 5 reported no statistically significant effect of treatment, and 2 reported no qualitative benefit. Repeated EDTA for CVD treatment may provide more benefit to patients with diabetes and severe peripheral arterial disease. Differences across infusion regimens, including dosage, solution components, and number of infusions, limit comparisons across studies. Additional research is necessary to confirm these findings and to evaluate the potential mediating role of metals. Registration URL: https://www.crd.york.ac.uk/; Unique identifier: CRD42020166505.


Subject(s)
Cardiovascular Diseases , Chelation Therapy , Adult , Cardiovascular Diseases/drug therapy , Chelation Therapy/methods , Edetic Acid/therapeutic use , Humans , Prospective Studies , Quality of Life , Randomized Controlled Trials as Topic , Retrospective Studies
18.
Antioxid Redox Signal ; 37(13-15): 990-997, 2022 11.
Article in English | MEDLINE | ID: mdl-35350849

ABSTRACT

Increasing evidence suggests that high selenium (Se) exposure is associated with adverse health effects. However, limited evidence exists on the association of Se exposure with cardiovascular disease (CVD), especially in communities affected by high naturally occurring Se in environmental media. We evaluated the prospective association between urinary Se levels and CVD incidence and mortality for 2727 American Indian adults who participated in the Strong Heart Study, with urinary Se levels measured at baseline (1989-1991) and CVD outcomes ascertained through 2017. The median (interquartile range) of urinary Se was 49.0 (36.7-67.4) µg/g creatinine. The multivariable adjusted hazard ratios (95% confidence interval) of incident CVD, coronary heart disease, and stroke comparing the 75th versus 25th percentile of urinary Se distributions were 1.11 (1.01-1.22), 1.05 (0.94-1.17), and 1.08 (0.88-1.33), respectively. In flexible dose-response models, increased risk for CVD incidence was only observed when the urinary Se level exceeded 60 µg/g creatinine. For CVD mortality, a nonstatistically significant U-shaped relationship was found across urinary Se levels. There was no evidence of effect modification by other urinary metal/metalloid levels. Our observation leads to the hypothesis that elevated Se exposure is a risk factor for CVD, especially in Se-replete populations. Antioxid. Redox Signal. 37, 990-997.


Subject(s)
Cardiovascular Diseases , Selenium , Adult , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Creatinine , Prospective Studies , Risk Factors , Incidence
19.
Environ Pollut ; 287: 117655, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34426377

ABSTRACT

Arsenic and uranium in unregulated private wells affect many rural populations across the US. The distribution of these contaminants in the private wells of most American Indian communities is poorly characterized, and seldom studied together. Here, we evaluate the association between drinking water arsenic and uranium levels in wells (n = 441) from three tribal regions in North Dakota and South Dakota participating in the Strong Heart Water Study. Groundwater contamination was extensive; 29% and 7% of wells exceeded maximum contaminant levels for arsenic and uranium respectively. 81% of wells had both arsenic and uranium concentrations at one-tenth of their human-health benchmark (arsenic, 1 µg/L; uranium 3 µg/L). Well arsenic and uranium concentrations were uncorrelated (rs = 0.06); however, there appeared to be a spatial correlation of wells co-contaminated by arsenic and uranium associated with flow along a geologic contact. These findings indicate the importance of measuring multiple metals in well water, and to understand underlying hydrogeological conditions. The underlying mechanisms for the prevalence of arsenic and uranium across Northern Plains Tribal Lands in the US, and in particular the occurrence of both elevated arsenic and uranium in drinking water wells in this region, demands further study.


Subject(s)
Arsenic , Uranium , Water Pollutants, Chemical , Arsenic/analysis , Environmental Monitoring , Humans , Uranium/analysis , Water , Water Pollutants, Chemical/analysis
20.
Environ Int ; 157: 106810, 2021 12.
Article in English | MEDLINE | ID: mdl-34365318

ABSTRACT

BACKGROUND: Chronic exposure to certain metals plays a role in disease development. Integrating untargeted metabolomics with urinary metallome data may contribute to better understanding the pathophysiology of diseases and complex molecular interactions related to environmental metal exposures. To discover novel associations between urinary metal biomarkers and metabolism networks, we conducted an integrative metallome-metabolome analysis using a panel of urinary metals and untargeted blood metabolomic data from the Strong Heart Family Study (SHFS). METHODS: The SHFS is a prospective family-based cohort study comprised of American Indian men and women recruited in 2001-2003. This nested case-control analysis of 145 participants of which 50 developed incident diabetes at follow up in 2006-2009, included participants with urinary metal and untargeted metabolomic data. Concentrations of 8 creatinine-adjusted urine metals/metalloids [antimony (Sb), cadmium (Cd), lead (Pb), molybdenum (Mo), selenium (Se), tungsten (W), uranium (U) and zinc (Zn)], and 4 arsenic species [inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenobetaine (AsB)] were measured. Global metabolomics was performed on plasma samples using high-resolution Orbitrap mass spectrometry. We performed an integrative network analysis using xMWAS and a metabolic pathway analysis using Mummichog. RESULTS: 8,810 metabolic features and 12 metal species were included in the integrative network analysis. Most metal species were associated with distinct subsets of metabolites, forming single-metal-multiple-metabolite clusters (|r|>0.28, p-value < 0.001). DMA (clustering with W), iAs (clustering with U), together with Mo and Se showed modest interactions through associations with common metabolites. Pathway enrichment analysis of associated metabolites (|r|>0.17, p-value < 0.1) showed effects in amino acid metabolism (AsB, Sb, Se and U), fatty acid and lipid metabolism (iAs, Mo, W, Sb, Pb, Cd and Zn). In stratified analyses among participants who went on to develop diabetes, iAs and U clustered together through shared metabolites, and both were associated with the phosphatidylinositol phosphate metabolism pathway; metals were also associated with metabolites in energy metabolism (iAs, MMA, DMA, U, W) and xenobiotic degradation and metabolism (DMA, Pb) pathways. CONCLUSION: In this integrative analysis of multiple metals and untargeted metabolomics, results show common associations with fatty acid, energy and amino acid metabolism pathways. Results for individual metabolite associations differed for different metals, indicating that larger populations will be needed to confirm the metal-metal interactions detected here, such as the strong interaction of uranium and inorganic arsenic. Understanding the biochemical networks underlying metabolic homeostasis and their association with exposure to multiple metals may help identify novel biomarkers, pathways of disease, potential signatures of environmental metal exposure.


Subject(s)
Arsenic , Diabetes Mellitus , Uranium , Cohort Studies , Diabetes Mellitus/epidemiology , Environmental Exposure/analysis , Female , Humans , Male , Metabolome , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL