Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 12(1): 17779, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273038

ABSTRACT

In this current research, the left-over residues collected from the dark fermentation-microbial electrolysis cells (DF-MEC) integrated system solely biocatalyzed by activated sludge during the bioconversion of the agricultural straw wastes into hydrogen energy, was investigated for its feasibility to be used as a potential alternative biofertilizer to the commonly costly inorganic ones. The results revealed that the electrohydrogenesis left-over residues enriched various plant growth-promoting microbial communities including Enterobacter (8.57%), Paenibacillus (1.18%), Mycobacterium (0.77%), Pseudomonas (0.65%), Bradyrhizobium (0.12%), Azospirillum (0.11%), and Mesorhizobium (0.1%) that are generally known for their ability to produce different essential phytohormones such as indole-3-acetic acid/indole acetic acid (IAA) and Gibberellins for plant growth. Moreover, they also contain both phosphate-solubilizing and nitrogen-fixing microbial communities that remarkably provide an adequate amount of assimilable phosphorus and nitrogen required for enhanced plants or crop growth. Furthermore, macro-, and micronutrients (including N, P, K, etc.) were all analyzed from the residues and detected adequate appreciate concentrations required for plant growth promotions. The direct application of MEC-effluent as fertilizer in this current study conspicuously promoted plant growth (Solanum lycopersicum L. (tomato), Capsicum annuum L. (chilli), and Solanum melongena L. (brinjal)) and speeded up flowering and fruit-generating processes. Based on these findings, electrohydrogenesis residues could undoubtedly be considered as a potential biofertilizer. Thus, this technology provides a new approach to agricultural residue control and concomitantly provides a sustainable, cheap, and eco-friendly biofertilizer that could replace the chemical costly fertilizers.


Subject(s)
Fertilizers , Solanum lycopersicum , Fertilizers/microbiology , Soil/chemistry , Sewage/chemistry , Plant Growth Regulators , Gibberellins , Nitrogen , Soil Microbiology , Phosphorus , Phosphates , Micronutrients , Hydrogen
2.
Ecotoxicol Environ Saf ; 242: 113892, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35863217

ABSTRACT

Rhamnolipid biosurfactants are multifunctional compounds that can play an indispensable role in biotechnological, biomedical, and environmental bioremediation-related fields, and have attracted significant attention in recent years. Herein, a novel strain Pseudomonas sp. S1WB was isolated from an oil-contaminated water sample. The biosurfactants produced by this strain have capabilities to reduce surface tension (SFT) at 32.75 ± 1.63 mN/m and emulsified 50.2 ± 1.13 % in liquid media containing 1 % used engine oil (UEO) as the sole carbon source. However, the lowest SFT reduction (28.25 ± 0.21), highest emulsification index (60.15 ± 0.07), and the maximum yields (900 mg/L) were achieved under optimized conditions; where, the glucose/urea and glycerol/urea combinations were found efficient carbon and nitrogen substrates for improved biosurfactants production. Biosurfactants product was characterized using ultra-high performance liquid chromatography-mass spectrometry (UHPLC- MS) and detected various di- rhamnolipids congeners. In addition, the di-rhamnolipids produced by S1WB strain was found highly stable in terms of surface activity and EI indices at different environmental factors i.e. temperature, pH and various NaCl concentrations, where, emulsifying property was found high stable till 30 days of incubation. Moreover, the stain was capable to degrade hydrocarbon at 42.2 ± 0.04 %, and the Gas chromatography- mass spectrometry (GC-MS) profile showed the majority of peak intensities of hydrocarbons have been completely degraded compared to control.


Subject(s)
Petroleum , Biodegradation, Environmental , Carbon , Glycolipids/chemistry , Hydrocarbons/metabolism , Petroleum/metabolism , Pseudomonas/metabolism , Surface-Active Agents/chemistry , Urea
3.
Sci Total Environ ; 751: 141720, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32882554

ABSTRACT

Freshwater lake ecosystem is a reservior of valuable microbial diversity. It needs to be explored for addressing key environmental issues like petroleum-hydrocarbon contamination. In this work, the microbial communities (pre and post enriched with petroleum-hydrocarbons) from different layers of freshwater lake, i.e. surface water, sediments and deepwater, were explored through metagenomic and culture-dependent approaches. A total of 41 bacterial phyla were retrieved from pre-enriched samples, which were significantly reduced in enriched samples where Proteobacteria were dominant (87% to 100%) followed by Bacteroidetes (7.37%) and Verrucomicrobia (3.06%). The most dominant hydrocarbon-degrading genera were extensively verified as Pseudomonas (48.65%), Acinetobacter (45.38%), Stenotrophomonas (3.16%) and Brevundimonas (2.07%) in surface water (S1WCC); Acinetobacter (62.46%), Aeromonas (10.7%), Sphingobacterium (5.20%) and Pseudomonas (4.23%) in sediment (S2MCC); and Acinetobacter (46.57%), Pseudomonas (13.10%), Comamonas (12.93%), Flavobacterium (12.18%) and Enterobacter (9.62%) in deep water (S4WCC). Additionally, the maximum biodegradation of petroleum-hydrocarbons (i.e. used engine oil or UEO) was achieved by microbiome of S2MCC (67.60 ± 0.08%) followed by S4WCC (59.70 ± 0.12%), whereas only 36.80 ± 0.10% degradation was achieved by S1WCC microbiome. On the other hand, UEO degradation by cultivable biosurfactant-producing single cultures such as Pseudomonas sp. S2WE, Pseudomonas sp. S2WG, Pseudomonas sp. S2MS, Ochrobactrum sp. S1MM and Bacillus nealsonii S2MT showed 31.10 ± 0.08% to 40.50 ± 0.11% biodegradation. Comparatively, the biodegradation efficiency was found higher (i.e. 42.20 ± 0.12% to 56.10 ± 0.12%) in each consortia comprising of two, three, four, and five bacterial cultures. Conclusively, the isolated culturable biosurfactants-producing bacterial consortium of freshwater lake demonstrated >80% contribution in the total petroleum-hydrocarbons degradation by the natural microbiome of the ecosystem.


Subject(s)
Microbiota , Petroleum , Bacillus , Biodegradation, Environmental , Hydrocarbons , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL