Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Ann Bot ; 108(1): 197-206, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21586528

ABSTRACT

BACKGROUND AND AIMS: Sex allocation has been studied mainly in small herbaceous plants but much less in monoecious wind-pollinated trees. The aim of this study was to explore changes in gender segregation and sex allocation by Pinus halepensis, a Mediterranean lowland pine tree, within tree crowns and between trees differing in their size or crown shape. METHODS: The production of new male and female cones and sex allocation of biomass, nitrogen and phosphorus were studied. The relationship between branch location, its reproductive status and proxies of branch vigour was also studied. KEY RESULTS: Small trees produced only female cones, but, as trees grew, they produced both male and female cones. Female cones were produced mainly in the upper part of the crown, and male cones in its middle and lower parts. Lateral branch density was correlated with the number of male but not female cones; lateral branches were more dense in large than in small trees and even denser in hemispherical trees. Apical branches grew faster, were thicker and their phosphorus concentration was higher than in lateral shoots. Nitrogen concentration was higher in cone-bearing apical branches than in apical vegetative branches and in lateral branches with or without cones. Allocation to male relative to female function increased with tree size as predicted by sex allocation theory. CONCLUSIONS: The adaptive values of sex allocation and gender segregation patterns in P. halepensis, in relation to its unique life history, are demonstrated and discussed. Small trees produce only female cones that have a higher probability of being pollinated than the probability of male cones pollinating; the female-first strategy enhances population spread. Hemispherical old trees are loaded with serotinous cones that supply enough seeds for post-fire germination; thus, allocation to males is more beneficial than to females.


Subject(s)
Pinus/anatomy & histology , Pinus/physiology , Adaptation, Physiological , Analysis of Variance , Biomass , Israel , Linear Models , Models, Biological , Nitrogen/metabolism , Phosphorus/metabolism , Pinus/growth & development , Plant Leaves/growth & development , Plant Stems/growth & development , Reproduction , Sex , Time Factors , Trees/anatomy & histology , Trees/growth & development , Trees/physiology
2.
Oecologia ; 147(1): 53-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16205954

ABSTRACT

Relationships between flowering plants and their pollinators are usually affected by the amount of reward, mainly pollen or nectar, offered to pollinators by flowers, with these amounts usually positively correlated with floral display. The large Oncocyclus iris flowers, despite being the largest flowers in the East Mediterranean flora, are nectarless and have hidden pollen. No pollinators visit the flowers during daytime, and these flowers are pollinated only by night-sheltering solitary male bees. These iris flowers are partially or fully dark-colored, suggesting that they gather heat by absorbing solar radiation. Here we test the hypothesis that the dark-colored flowers of the Oncocyclus irises offer heat reward to their male solitary bee pollinators. Floral temperature was higher by 2.5 degrees C than ambient air after sunrise. Solitary male bees emerged earlier after sheltering in Oncocyclus flowers than from other experimental shelter types. Pollination tunnels facing east towards the rising sun hosted more male bees than other aspects. We suggest that floral heat reward can explain the evolution of dark floral colors in Oncocyclus irises, mediated by the pollinators' behavior.


Subject(s)
Bees/physiology , Hot Temperature , Iris Plant/physiology , Pollen/physiology , Sunlight , Adaptation, Physiological/physiology , Animals , Biological Evolution , Feeding Behavior/physiology , Male , Mediterranean Sea , Reproduction/physiology
3.
Am J Bot ; 93(11): 1660-6, 2006 Nov.
Article in English | MEDLINE | ID: mdl-21642111

ABSTRACT

Plant biologists have an enduring interest in assessing components of plant fitness and determining limits to seed set. Consequently, the relative contributions of resource and pollinator availability have been documented for a large number of plant species. We experimentally examined the roles of resource and pollen availability on seed set by the northern pitcher plant Sarracenia purpurea. We were able to distinguish the relative contributions of carbon (photosynthate) and mineral nutrients (nitrogen) to reproductive success. We also determined potential pollinators of this species. The bees Bombus affinis and Augochlorella aurata and the fly Fletcherimyia fletcheri were the only floral visitors to S. purpurea that collected pollen. Supplemental pollination increased seed set by <10%, a much lower percentage than would be expected, given data from noncarnivorous, animal-pollinated taxa. Seed set was reduced by 14% in plants that could not capture prey and by another 23% in plants whose pitcher-shaped leaves were also prevented from photosynthesizing. We conclude that resources are more important than pollen availability in determining seed set by this pitcher plant and that reproductive output may be another "cost" of the carnivorous habit.

SELECTION OF CITATIONS
SEARCH DETAIL