Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 48(4): 354-362, 4/2015. tab, graf
Article in English | LILACS | ID: lil-744361

ABSTRACT

Exercise intolerance due to impaired oxidative metabolism is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still uncertain whether L-carnitine supplementation is beneficial for patients with MM. The aim of our study was to investigate the effects of L-carnitine on exercise performance in MM. Twelve MM subjects (mean age±SD=35.4±10.8 years) with chronic progressive external ophthalmoplegia (CPEO) were first compared to 10 healthy controls (mean age±SD=29±7.8 years) before they were randomly assigned to receive L-carnitine supplementation (3 g/daily) or placebo in a double-blind crossover design. Clinical status, body composition, respiratory function tests, peripheral muscle strength (isokinetic and isometric torque) and cardiopulmonary exercise tests (incremental to peak exercise and at 70% of maximal), constant work rate (CWR) exercise test, to the limit of tolerance [Tlim]) were assessed after 2 months of L-carnitine/placebo administration. Patients with MM presented with lower mean height, total body weight, fat-free mass, and peripheral muscle strength compared to controls in the pre-test evaluation. After L-carnitine supplementation, the patients with MM significantly improved their Tlim (14±1.9 vs 11±1.4 min) and oxygen consumption ( V ˙ O 2 ) at CWR exercise, both at isotime (1151±115 vs 1049±104 mL/min) and at Tlim (1223±114 vs 1060±108 mL/min). These results indicate that L-carnitine supplementation may improve aerobic capacity and exercise tolerance during high-intensity CWRs in MM patients with CPEO.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Young Adult , Carnitine/therapeutic use , Exercise Tolerance/drug effects , Ophthalmoplegia, Chronic Progressive External/drug therapy , Vitamin B Complex/therapeutic use , Cross-Over Studies , Double-Blind Method , Exercise Test/drug effects , Lactic Acid/blood , Mitochondrial Myopathies/drug therapy , Muscle Strength/drug effects , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Spirometry
2.
Braz J Med Biol Res ; 48(4): 354-62, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25714882

ABSTRACT

Exercise intolerance due to impaired oxidative metabolism is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still uncertain whether L-carnitine supplementation is beneficial for patients with MM. The aim of our study was to investigate the effects of L-carnitine on exercise performance in MM. Twelve MM subjects (mean age±SD=35.4±10.8 years) with chronic progressive external ophthalmoplegia (CPEO) were first compared to 10 healthy controls (mean age±SD=29±7.8 years) before they were randomly assigned to receive L-carnitine supplementation (3 g/daily) or placebo in a double-blind crossover design. Clinical status, body composition, respiratory function tests, peripheral muscle strength (isokinetic and isometric torque) and cardiopulmonary exercise tests (incremental to peak exercise and at 70% of maximal), constant work rate (CWR) exercise test, to the limit of tolerance [Tlim]) were assessed after 2 months of L-carnitine/placebo administration. Patients with MM presented with lower mean height, total body weight, fat-free mass, and peripheral muscle strength compared to controls in the pre-test evaluation. After L-carnitine supplementation, the patients with MM significantly improved their Tlim (14±1.9 vs 11±1.4 min) and oxygen consumption ( V ˙ O 2 ) at CWR exercise, both at isotime (1151±115 vs 1049±104 mL/min) and at Tlim (1223±114 vs 1060±108 mL/min). These results indicate that L-carnitine supplementation may improve aerobic capacity and exercise tolerance during high-intensity CWRs in MM patients with CPEO.


Subject(s)
Carnitine/therapeutic use , Exercise Tolerance/drug effects , Ophthalmoplegia, Chronic Progressive External/drug therapy , Vitamin B Complex/therapeutic use , Adult , Cross-Over Studies , Double-Blind Method , Exercise Test/drug effects , Female , Humans , Lactic Acid/blood , Male , Middle Aged , Mitochondrial Myopathies/drug therapy , Muscle Strength/drug effects , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Spirometry , Young Adult
3.
Thorax ; 60(7): 531-7, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15994258

ABSTRACT

BACKGROUND: Skeletal muscle wasting and dysfunction are strong independent predictors of mortality in patients with chronic obstructive pulmonary disease (COPD). Creatine nutritional supplementation produces increased muscle mass and exercise performance in health. A controlled study was performed to look for similar effects in 38 patients with COPD. METHODS: Thirty eight patients with COPD (mean (SD) forced expiratory volume in 1 second (FEV(1)) 46 (15)% predicted) were randomised to receive placebo (glucose polymer 40.7 g) or creatine (creatine monohydrate 5.7 g, glucose 35 g) supplements in a double blind trial. After 2 weeks loading (one dose three times daily), patients participated in an outpatient pulmonary rehabilitation programme combined with maintenance (once daily) supplementation. Pulmonary function, body composition, and exercise performance (peripheral muscle strength and endurance, shuttle walking, cycle ergometry) took place at baseline (n = 38), post loading (n = 36), and post rehabilitation (n = 25). RESULTS: No difference was found in whole body exercise performance between the groups: for example, incremental shuttle walk distance mean -23.1 m (95% CI -71.7 to 25.5) post loading and -21.5 m (95% CI -90.6 to 47.7) post rehabilitation. Creatine increased fat-free mass by 1.09 kg (95% CI 0.43 to 1.74) post loading and 1.62 kg (95% CI 0.47 to 2.77) post rehabilitation. Peripheral muscle performance improved: knee extensor strength 4.2 N.m (95% CI 1.4 to 7.1) and endurance 411.1 J (95% CI 129.9 to 692.4) post loading, knee extensor strength 7.3 N.m (95% CI 0.69 to 13.92) and endurance 854.3 J (95% CI 131.3 to 1577.4) post rehabilitation. Creatine improved health status between baseline and post rehabilitation (St George's Respiratory Questionnaire total score -7.7 (95% CI -14.9 to -0.5)). CONCLUSIONS: Creatine supplementation led to increases in fat-free mass, peripheral muscle strength and endurance, health status, but not exercise capacity. Creatine may constitute a new ergogenic treatment in COPD.


Subject(s)
Cachexia/diet therapy , Creatine/administration & dosage , Dietary Supplements , Exercise Tolerance/physiology , Pulmonary Disease, Chronic Obstructive/diet therapy , Administration, Oral , Cachexia/physiopathology , Cachexia/rehabilitation , Double-Blind Method , Forced Expiratory Volume/physiology , Humans , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/rehabilitation , Quality of Life , Vital Capacity/physiology
4.
Thorax ; 57(4): 333-7, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11923552

ABSTRACT

BACKGROUND: Passive training of specific locomotor muscle groups by means of neuromuscular electrical stimulation (NMES) might be better tolerated than whole body exercise in patients with severe chronic obstructive pulmonary disease (COPD). It was hypothesised that this novel strategy would be particularly effective in improving functional impairment and the consequent disability which characterises patients with end stage COPD. METHODS: Fifteen patients with advanced COPD (nine men) were randomly assigned to either a home based 6 week quadriceps femoris NMES training programme (group 1, n=9, FEV(1)=38.0 (9.6)% of predicted) or a 6 week control period before receiving NMES (group 2, n=6, FEV(1)=39.5 (13.3)% of predicted). Knee extensor strength and endurance, whole body exercise capacity, and health related quality of life (Chronic Respiratory Disease Questionnaire, CRDQ) were assessed. RESULTS: All patients were able to complete the NMES training programme successfully, even in the presence of exacerbations (n=4). Training was associated with significant improvements in muscle function, maximal and endurance exercise tolerance, and the dyspnoea domain of the CRDQ (p<0.05). Improvements in muscle performance and exercise capacity after NMES correlated well with a reduction in perception of leg effort corrected for exercise intensity (p<0.01). CONCLUSIONS: For severely disabled COPD patients with incapacitating dyspnoea, short term electrical stimulation of selected lower limb muscles involved in ambulation can improve muscle strength and endurance, whole body exercise tolerance, and breathlessness during activities of daily living.


Subject(s)
Electric Stimulation Therapy/methods , Pulmonary Disease, Chronic Obstructive/rehabilitation , Aged , Body Composition , Exercise Test , Female , Forced Expiratory Volume/physiology , Home Care Services/organization & administration , Humans , Male , Physical Endurance/physiology , Prospective Studies , Pulmonary Disease, Chronic Obstructive/physiopathology , Quality of Life , Vital Capacity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL