Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Physiol ; 12: 704290, 2021.
Article in English | MEDLINE | ID: mdl-34408664

ABSTRACT

Carnitine palmitoyltransferase II (CPTII) deficiency is the most frequent inherited disorder regarding muscle fatty acid metabolism, resulting in a reduced mitochondrial long-chain fatty acid oxidation during endurance exercise. This condition leads to a clinical syndrome characterized by muscle fatigue and/or muscle pain with a variable annual frequency of severe rhabdomyolytic episodes. While since the CPTII deficiency discovery remarkable scientific advancements have been reached in genetic analysis, pathophysiology and diagnoses, the same cannot be said for the methods of treatments. The current recommendations remain those of following a carbohydrates-rich diet with a limited fats intake and reducing, even excluding, physical activity, without, however, taking into account the long-term consequences of this approach. Suggestions to use carnitine and medium chain triglycerides remain controversial; conversely, other potential dietary supplements able to sustain muscle metabolism and recovery from exercise have never been taken into consideration. The aim of this review is to clarify biochemical mechanisms related to nutrition and physiological aspects of muscle metabolism related to exercise in order to propose new theoretical bases of treatment which, if properly tested and validated by future trials, could be applied to improve the quality of life of these patients.

2.
Front Immunol ; 11: 574029, 2020.
Article in English | MEDLINE | ID: mdl-33193359

ABSTRACT

From Pauling's theories to the present, considerable understanding has been acquired of both the physiological role of vitamin C and of the impact of vitamin C supplementation on the health. Although it is well known that a balanced diet which satisfies the daily intake of vitamin C positively affects the immune system and reduces susceptibility to infections, available data do not support the theory that oral vitamin C supplements boost immunity. No current clinical recommendations support the possibility of significantly decreasing the risk of respiratory infections by using high-dose supplements of vitamin C in a well-nourished general population. Only in restricted subgroups (e.g., athletes or the military) and in subjects with a low plasma vitamin C concentration a supplementation may be justified. Furthermore, in categories at high risk of infection (i.e., the obese, diabetics, the elderly, etc.), a vitamin C supplementation can modulate inflammation, with potential positive effects on immune response to infections. The impact of an extra oral intake of vitamin C on the duration of a cold and the prevention or treatment of pneumonia is still questioned, while, based on critical illness studies, vitamin C infusion has recently been hypothesized as a treatment for COVID-19 hospitalized patients. In this review, we focused on the effects of vitamin C on immune function, summarizing the most relevant studies from the prevention and treatment of common respiratory diseases to the use of vitamin C in critical illness conditions, with the aim of clarifying its potential application during an acute SARS-CoV2 infection.


Subject(s)
Ascorbic Acid/immunology , Ascorbic Acid/therapeutic use , COVID-19 Drug Treatment , Common Cold/drug therapy , Common Cold/prevention & control , SARS-CoV-2 , Vitamins/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Ascorbic Acid/adverse effects , COVID-19/virology , Child , Child, Preschool , Critical Illness , Dietary Supplements , Female , Humans , Infant , Male , Middle Aged , Young Adult
3.
Geriatrics (Basel) ; 5(1)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155760

ABSTRACT

Musculoskeletal disorders in aging and pain are closely connected because of multiple mechanisms leading to loss of mobility and autonomy. Pain is predictive of diability and worsening frailty and the strength of this relationship increases with the severity of pain. This study presents a systematic review of randomized controlled trials, cross sectional studies, and observational studies based on treatment of pain in adults with musculoskeletal disorders using nutritional non-pharmacological (nutrients and antioxidants) interventions. The review found the efficiency of the following topics: (a) accession of the patient to a dietary counselling (e.g., daily recommended amount of protein-equivalent to at least of 1 g of protein per kilogram of body weight); (b) intake of glutamic acid-rich such as soy, egg, and cod and tryptophan-rich foods such as milk and peanuts-or taking quick-acting, free-form supplements; (c) supplementation of vitamin D and magnesium, if lacking; (d) weekly consumption of fish or supplements of omega-3 fatty acids; and (e) availability of botanicals, in particular curcumin and gingerol. These non-pharmacological interventions can help the pain therapist to create a personalized medicine (precision medicine), acting with the maximum efficacy and safety, and also reducing the dosage of analgesic drugs needed.

4.
Front Physiol ; 9: 1140, 2018.
Article in English | MEDLINE | ID: mdl-30174620

ABSTRACT

Background: The purpose of this study was to investigate the acute effects of a single oral administration of an essential amino acids enriched mixture (EAA) on myoelectric descriptors of fatigue and maximal force production after a resistance exercise protocol (REP). Methods: Twenty adult males (age: 27 ± 6 years; body mass: 72.7 ± 7.50 kg; height: 1.76 ± 0.06 m) were enrolled in a double-blind crossover placebo-controlled study. Subjects were randomized to receive EAA mix (0.15 g/kg BM) or a placebo (PLA) in two successive trials 7 days apart. In both trials subjects completed a REP 2 h after the ingestion of the EAA mix or PLA. Before ingestion and after REP subjects performed isometric contractions of the dominant upper limb with the elbow joint at 120 degrees: (1) two maximal voluntary contractions (MVCs) for 2-3 s; (2) at 20% MVC for 90 s; (3) at 60% MVC until exhaustion. Mean values of MVC, conduction velocity initial values (CV), fractal dimension initial values (FD), their rates of change (CV slopes, FD slopes) and the Time to perform the Task (TtT) were obtained from a multichannel surface electromyography (sEMG) recording technique. Basal blood lactate (BL) and BL after REP were measured. Results: Following REP a significant decrease of MVC was observed in PLA (P < 0.05), while no statistical differences were found in EAA between pre-REP and post-REP. After REP, although a significant increase in BL was found in both groups (P < 0.0001) a higher BL Δ% was observed in PLA compared to EAA (P < 0.05). After REP, at 60% MVC a significant increase of CV rate of change (P < 0.05) was observed in PLA but not in EAA. At the same force level TtT was longer in EAA compared to PLA, with a significant TtT Δ% between groups (P < 0.001). Conclusion: Acute EAA enriched mix administration may prevent the loss of force-generating capacity during MVC following a REP. During isometric contraction at 60% MVC after REP the EAA mix may maintain CV rate of change values with a delay in the TtT failure.

5.
J Am Coll Nutr ; 34 Suppl 1: 62-7, 2015.
Article in English | MEDLINE | ID: mdl-26400438

ABSTRACT

Despite the numerous positive effects of physical exercise, some negative physiological changes occur in long-lasting heavy training with transient dysfunction of the immune system, increased inflammation, and oxidative stress. This is the case of elite athletes, who train intensively to compete at the highest levels. However, these athletes can counteract the negative effects of heavy training, reducing acute and chronic inflammations and supporting the immune system, with nutritional and supplementation countermeasures. For this purpose, macronutrient manipulation with an appropriate use of certain supplements can be considered as an intervention to reduce exercise-induced immune changes and inflammatory risk. For example, branched-chain amino acid (BCAA) supplementation may promote such immune responses in skeletal muscle. Furthermore, micronutrients play an important role in immune function; in particular, the antioxidant capacity of several dietary micronutrients (e.g., tocopherols, docosahexaenoate, and flavonoids) is very interesting to support the endogenous antioxidant defense systems of the athletes, counterbalancing the negative effects of oxidative damage due to free radicals. Some of these nutrients have potential anti-inflammatory properties as assessed by the attenuated levels of interleukin-6 (IL-6) and C-reactive protein (CRP). Key Teaching Points: Long-lasting heavy training plan and competition can lead to chronic immune suppression in athletes, increasing infection risk. Chronic exercise increases mobilization of neutrophils, decreases mobilization of lymphocytes, and decreases the absolute and relative numbers of neutrophils at rest. Nutritional deficiencies alter the immuno-system and increase infection risk. Nutrition can influence exercise-induced immune suppression. Elite athletes competing at the highest levels can benefit from nutritional and supplementation support to improve immunity and reduce acute and chronic inflammations.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Athletic Performance/physiology , Dietary Supplements , Inflammation/diet therapy , Sports Nutritional Physiological Phenomena/drug effects , Antioxidants/administration & dosage , C-Reactive Protein/metabolism , Exercise/physiology , Humans , Inflammation/blood , Interleukin-6/metabolism , Micronutrients/therapeutic use , Muscle, Skeletal/immunology , Oxidative Stress/drug effects
6.
Nutrients ; 6(8): 3040-9, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25093275

ABSTRACT

Beef is a nutrient-rich, high-quality protein containing all the essential amino acids in proportions similar to those found in human skeletal muscle. In order to investigate the efficacy of a beef supplementation strategy on strength and body composition, we recruited 26 young healthy adults to participate in a resistance-training program of eight weeks, based on the use of isotonic machines and free weights at 75% of one repetition maximum. Subjects were randomly divided into two groups, food group and control group, of 12 and 14 subjects respectively. Food group were supplemented after resistance training with a 135 g serving of lean beef (tinned meat), providing 20 g of protein and 1.7 g of fat. No supplementation was provided to control group. Fat mass, fat free mass, lean mass, assessed by bioelectrical impedance analyzer, and muscle strength, assessed by one repetition maximum test, were evaluated in all subjects both at the beginning (week 0) and at the end (week 8) of the study. Pre- and post-training differences were evaluated with paired t-tests while group differences for each outcome parameter was evaluated with independent t-tests. At the end of the study the food group showed a significantly decrease in fat mass (week 0: 15.0 ± 6.7 kg; week 8: 13.1 ± 7.6 kg; Δ: -1.9 ± 2.9 kg; p < 0.05) and a significantly increase in fat free mass (week 0: 52.8 kg ± 9.4; week 8: 55.1 kg ± 10.9; Δ: 2.3 ± 2.5 kg; p < 0.01). No significant differences in lean mass were found in either food group or control group. No significant differences in one repetition maximum tests were found between food group and control group. Tinned meat can be considered a nutrition strategy in addition to other proteins or amino acid supplements, but as with any other supplementation strategy, a proper nutrition plan must be coupled.


Subject(s)
Body Composition , Dietary Proteins/administration & dosage , Dietary Supplements , Meat , Muscle Strength/physiology , Resistance Training , Adolescent , Adult , Animals , Body Mass Index , Cattle , Female , Healthy Volunteers , Humans , Male , Muscle, Skeletal/physiology , Nutrition Assessment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL