Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cardiovasc Diabetol ; 22(1): 8, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635707

ABSTRACT

BACKGROUND: Serum selenium levels have been associated with the incidence of heart failure (HF) and signs of the metabolic syndrome. In addition, notable differences have been reported between males and females in food intake and micronutrient metabolism, possibly explaining different health outcomes. OBJECTIVE: Our objective was to elucidate sex-specific, cross-sectional phenotypic differences in the association of serum selenium concentrations with parameters of metabolic syndrome and HF. METHODS: We investigated data from individuals from a community-based cohort (PREVEND; N = 4288) and heart failure cohort (BIOSTAT-CHF; N = 1994). In both populations, cross-sectional analyses were performed for potential interaction (p < 0.1) between sex and serum selenium with overlapping signs and clinical parameters of the metabolic syndrome and HF. RESULTS: Baseline selenium levels of the total cohort were similar between PREVEND (85.7 µg/L) and BIOSTAT-CHF (89.1 µg/L). Females with lower selenium levels had a higher BMI and increased prevalence of diabetes than females with higher selenium, in both PREVEND (pinteraction < 0.001; pinteraction = 0.040, resp.) and BIOSTAT-CHF (pinteraction = 0.021; pinteraction = 0.024, resp.), while opposite associations were observed for males. Additionally, in females, but not in males, lower selenium was associated with a higher prevalence of myocardial infarction (MI) in PREVEND (pinteraction = 0.021) and BIOSTAT-CHF (pinteraction = 0.084). CONCLUSION: Lower selenium was associated with a higher BMI and increased prevalence of diabetes in females, opposite to males, and was also associated with more MI in females. Interventional studies are needed to validate this observation.


Subject(s)
Heart Failure , Metabolic Syndrome , Myocardial Infarction , Selenium , Male , Female , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Metabolic Syndrome/complications , Sex Characteristics , Prevalence , Cross-Sectional Studies , Myocardial Infarction/complications
2.
JPEN J Parenter Enteral Nutr ; 45(4): 738-750, 2021 05.
Article in English | MEDLINE | ID: mdl-32716569

ABSTRACT

BACKGROUND: Administration of intravenous ω-3 fatty acid (ω-3FA) in advanced pancreatic adenocarcinoma patients receiving gemcitabine chemotherapy shows disease stabilization and improved progression-free survival. Using high-definition plasma proteomics, the underlying biological mechanisms responsible for these clinical effects are investigated. METHODS AND RESULTS: A pilot study involving plasma that was collected at baseline from 13 patients with histologically confirmed, unresectable pancreatic adenocarcinoma (baseline group) after 1-month treatment with intravenous gemcitabine and ω-3FA (treatment group) and intravenous gemcitabine only (control group) and was prepared for proteomic analysis. A 2-arm study comparing baseline vs treatment and treatment vs control was performed. Proteins were isolated from plasma with extensive immunodepletion, then digested and labeled with isobaric tandem mass tag peptide tags. Samples were then combined, fractionated, and injected into a QExactive-Orbitrap Mass-Spectrometer and analyzed on Proteome Discoverer and Scaffold with ensuing bioinformatics analysis. Selective reaction monitoring analysis was performed for verification. In total, 3476 proteins were identified. Anti-inflammatory markers (C-reactive protein, haptoglobin, and serum amyloid-A1) were reduced in the treatment group. Enrichment analysis showed angiogenesis downregulation, complement immune systems upregulation, and epigenetic modifications on histones. Pathway analysis identified direct action via the Pi3K-AKT pathway. Serum amyloid-A1 significantly reduced (P < .001) as a potential biomarker of efficacy for ω-3FA. CONCLUSIONS: This pilot study demonstrates administration of ω-3FA has potential anti-inflammatory, antiangiogenic, and proapoptotic effects via direct interaction with cancer-signaling pathways in patients with advanced pancreatic adenocarcinoma. Further studies in a larger sample size is required to validate the clinical correlation found in this preliminary study.


Subject(s)
Adenocarcinoma , Fatty Acids, Omega-3 , Pancreatic Neoplasms , Adenocarcinoma/drug therapy , Deoxycytidine/analogs & derivatives , Humans , Pancreatic Neoplasms/drug therapy , Pilot Projects , Proteomics , Gemcitabine
3.
Eur J Heart Fail ; 22(8): 1415-1423, 2020 08.
Article in English | MEDLINE | ID: mdl-31808274

ABSTRACT

AIMS: Severe deficiency of the essential trace element selenium can cause myocardial dysfunction although the mechanism at cellular level is uncertain. Whether, in clinical practice, moderate selenium deficiency is associated with worse symptoms and outcome in patients with heart failure is unknown. METHODS AND RESULTS: BIOSTAT-CHF is a multinational, prospective, observational cohort study that enrolled patients with worsening heart failure. Serum concentrations of selenium were measured by inductively coupled plasma mass spectrometry. Primary endpoint was a composite of all-cause mortality and hospitalization for heart failure; secondary endpoint was all-cause mortality. To investigate potential mechanisms by which selenium deficiency might affect prognosis, human cardiomyocytes were cultured in absence of selenium, and mitochondrial function and oxidative stress were assessed. Serum selenium concentration (deficiency) was <70 µg/L in 485 (20.4%) patients, who were older, more often women, had worse New York Heart Association class, more severe signs and symptoms of heart failure and poorer exercise capacity (6-min walking test) and quality of life (Kansas City Cardiomyopathy Questionnaire). Selenium deficiency was associated with higher rates of the primary endpoint [hazard ratio (HR) 1.23; 95% confidence interval (CI) 1.06-1.42] and all-cause mortality (HR 1.52; 95% CI 1.26-1.86). In cultured human cardiomyocytes, selenium deprivation impaired mitochondrial function and oxidative phosphorylation, and increased intracellular reactive oxygen species levels. CONCLUSIONS: Selenium deficiency in heart failure patients is independently associated with impaired exercise tolerance and a 50% higher mortality rate, and impaired mitochondrial function in vitro, in human cardiomyocytes. Clinical trials are needed to investigate the effect of selenium supplements in patients with heart failure, especially if they have low plasma concentrations of selenium.


Subject(s)
Heart Failure , Percutaneous Coronary Intervention , Aged , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Female , Heart Failure/epidemiology , Humans , Prospective Studies , Quality of Life , Selenium , Stroke Volume , Ventricular Function, Left
4.
Microvasc Res ; 119: 7-12, 2018 09.
Article in English | MEDLINE | ID: mdl-29596860

ABSTRACT

Homeostasis around vascular endothelium is a function of the equilibrium between the bioavailability of nitric oxide (NO) and oxidizing reactive oxygen species (ROS). Within the vascular endothelium, NO enhances vasodilatation, reduces platelet aggression and adhesion (anti-thrombotic), prevents smooth muscle proliferation, inhibits adhesion of leukocytes and expression of pro-inflammatory cytokines genes (anti-inflammatory), and counters the oxidation of low density lipoprotein (LDL) cholesterol. A shift in the equilibrium that favours NO deficiency and ROS formation leads to endothelial dysfunction and cardiovascular disease. The synthesis of NO is catalysed by nitric oxide synthase and co-factored by tetrahydrobiopterin (BH4), nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN). The focus of this review is on endothelial nitric oxide synthase (eNOS), although we recognize that the other nitric oxide synthases may contribute as well. Levels of homocysteine and the active metabolite of folate, 5-methyltetrahydrofolate (5-MTHF), play a determining role in circulating levels of nitric oxide. We review endothelial nitric oxide bioavailabilty in relation to endothelial dysfunction as well as the therapeutic strategies involving the nitric oxide synthesis pathway. Although folate supplementation improves endothelial function, results from large clinical trials and meta-analyses on palpable clinical endpoints have been inconsistent. There are however, encouraging results from animal and clinical studies of supplementation with the co-factor for nitric oxide synthesis, BH4, though its tendency to be oxidized to dihydrobiopterin (BH2) remains problematic. Understanding how to maintain a high ratio of BH4 to BH2 appears to be the key that will likely unlock the therapeutic potential of nitric oxide synthesis pathway.


Subject(s)
Biopterins/analogs & derivatives , Cardiovascular Diseases/metabolism , Endothelium, Vascular/metabolism , Hemodynamics , Nitric Oxide/metabolism , Tetrahydrofolates/metabolism , Biopterins/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Dietary Supplements , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Folic Acid/therapeutic use , Hemodynamics/drug effects , Homocysteine/metabolism , Humans , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL