Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Cancer Ther ; 10(6): 1082-92, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21518728

ABSTRACT

Interleukin-2 (IL-2) has been shown to possess antitumor activity in numerous preclinical and clinical studies. However, the short half-life of recombinant IL-2 protein in serum requires repeated high-dose injections, resulting in severe side effects. Although adenovirus-mediated IL-2 gene therapy has shown antitumor efficacy, the host antibody response to adenoviral particles and potential biosafety concerns still obstruct its clinical applications. Here we report a novel nanopolymer for IL-2 delivery, consisting of low molecular weight polyethylenimine (600 Da) linked by ß-cyclodextrin and conjugated with folate (named H1). H1 was mixed with IL-2 plasmid to form H1/pIL-2 polyplexes of around 100 nm in diameter. Peritumoral injection of these polyplexes suppressed the tumor growth and prolonged the survival of C57/BL6 mice bearing B16-F1 melanoma grafts. Importantly, the antitumor effects of H1/pIL-2 (50 µg DNA) were similar to those of recombinant adenoviruses expressing IL-2 (rAdv-IL-2; 2 × 10(8) pfu). Furthermore, we showed that H1/pIL-2 stimulated the activation and proliferation of CD8+, CD4+ T cell, and natural killer cells in peripheral blood and increased the infiltration of CD8+, CD4+ Tcells, and natural killer cells into the tumor environment. In conclusion, these results show that H1/pIL-2 is an effective and safe melanoma therapeutic with an efficacy comparable to that of rAdv-IL-2. This treatment represents an alternative gene therapy strategy for melanoma.


Subject(s)
Immunotherapy/methods , Interleukin-2/administration & dosage , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Nanoparticles/administration & dosage , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Drug Delivery Systems , Female , Folic Acid/chemistry , Humans , Interleukin-2/chemistry , Interleukin-2/genetics , Killer Cells, Natural/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry , Polymers/therapeutic use , T-Lymphocytes, Helper-Inducer/metabolism , Transgenes , beta-Cyclodextrins/chemistry
2.
World J Gastroenterol ; 15(24): 2987-94, 2009 Jun 28.
Article in English | MEDLINE | ID: mdl-19554651

ABSTRACT

AIM: To test whether oral L-81 treatment could improve the condition of mice with diabetes and to investigate how L-81 regulates microsomal triglyceride transfer protein (MTP) activity in the liver. METHODS: Genetically diabetic (db/db) mice were fed on chow supplemented with or without L-81 for 4 wk. The body weight, plasma glucose level, plasma lipid profile, and adipocyte volume of the db/db mice were assessed after treatment. Toxicity of L-81 was also evaluated. To understand the molecular mechanism, HepG2 cells were treated with L-81 and the effects on apolipoprotein B (apoB) secretion and mRNA level of the MTP gene were assessed. RESULTS: Treatment of db/db mice with L-81 significantly reduced and nearly normalized their body weight, hyperphagia and polydipsia. L-81 also markedly decreased the fasting plasma glucose level, improved glucose tolerance, and attenuated the elevated levels of plasma cholesterol and triglyceride. At the effective dosage, little toxicity was observed. Treatment of HepG2 cells with L-81 not only inhibited apoB secretion, but also significantly decreased the mRNA level of the MTP gene. Similar to the action of insulin, L-81 exerted its effect on the MTP promoter. CONCLUSION: L-81 represents a promising candidate in the development of a selective insulin-mimetic molecule and an anti-diabetic agent.


Subject(s)
Carrier Proteins/metabolism , Diabetes Mellitus, Experimental/drug therapy , Gene Expression Regulation/drug effects , Poloxamer , Surface-Active Agents , Animals , Carrier Proteins/genetics , Cell Line , Cholesterol/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Drinking/drug effects , Eating/drug effects , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Liver/cytology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Poloxamer/pharmacology , Poloxamer/therapeutic use , Rosiglitazone , Surface-Active Agents/pharmacology , Surface-Active Agents/therapeutic use , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Triglycerides/blood , Weight Loss/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL