Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Nanotechnol ; 16(7): 830-839, 2021 07.
Article in English | MEDLINE | ID: mdl-33958764

ABSTRACT

Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy. In contrast, a targeted screen revealed that IGF1R kinase inhibitors enhance uptake and efficacy of nab-PTX by mimicking glucose deprivation and promoting macropinocytosis via AMPK, a nutrient sensor in cells. This study thus shows how nanoparticulate albumin bound drug efficacy can be therapeutically improved by reprogramming nutrient signalling and enhancing macropinocytosis in cancer cells.


Subject(s)
MAP Kinase Signaling System/drug effects , Mutation , Nanoparticles , Neoplasms, Experimental/drug therapy , Paclitaxel , Proto-Oncogene Proteins p21(ras)/genetics , Serum Albumin, Human , Animals , Cell Line, Tumor , Glucose/deficiency , Glucose/metabolism , Humans , Mice , Mice, Transgenic , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology , Pinocytosis , Proto-Oncogene Proteins p21(ras)/metabolism , RAW 264.7 Cells , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
2.
Radiology ; 298(1): 123-132, 2021 01.
Article in English | MEDLINE | ID: mdl-33107799

ABSTRACT

Background Anaplastic thyroid cancer (ATC) is aggressive with a poor prognosis, partly because of the immunosuppressive microenvironment created by tumor-associated macrophages (TAMs). Purpose To understand the relationship between TAM infiltration, tumor vascularization, and corresponding drug delivery by using ferumoxytol-enhanced MRI and macrin in an ATC mouse model. Materials and Methods ATC tumors were generated in 6-8-week-old female B6129SF1/J mice through intrathyroid injection to model orthotopic tumors, or intravenously to model hematogenous metastasis, and prospectively enrolled randomly into treatment cohorts (n = 94 total; August 1, 2018, to January 15, 2020). Mice were treated with vehicle or combined serine/threonine-protein kinase B-Raf (BRAF) kinase inhibitor (BRAFi) and anti-PDL1 antibody (aPDL1). A subset was cotreated with therapies, including an approximately 70-nm model drug delivery nanoparticle (DDNP) to target TAM, and an antibody-neutralizing colony stimulating factor 1 receptor (CSF1R). Imaging was performed at the macroscopic level with ferumoxytol-MRI and microscopically with macrin. Genetically engineered BrafV600E/WT p53-null allografts were used and complemented by a GFP-transgenic derivative and human xenografts. Tumor-bearing organs were processed by using tissue clearing and imaged with confocal microscopy and MRI. Two-tailed Wilcoxon tests were used for comparison (≥five per group). Results TAM levels were higher in orthotopic thyroid tumors compared with pulmonary metastatic lesions by 79% ± 23 (standard deviation; P < .001). These findings were concordant with ferumoxytol MRI, which showed 136% ± 88 higher uptake in thyroid lesions (P = .02) compared with lung lesions. BRAFi and aPDL1 combination therapy resulted in higher tumor DDNP delivery by 39% ± 14 in pulmonary lesions (P = .004). Compared with the untreated group, tumors following BRAFi, aPDL1, and CSF1R-blocking antibody combination therapy did not show greater levels of TAM or DDNP (P = .82). Conclusion In a mouse model of anaplastic thyroid cancer, ferumoxytol MRI showed 136% ± 88 greater uptake in orthotopic thyroid tumors compared with pulmonary lesions, which reflected high vascularization and greater tumor-associated macrophage (TAM) levels. Serine/threonine-protein kinase B-Raf inhibitor and anti-programmed death ligand 1 antibody elicited higher local TAM levels and 43% ± 20 greater therapeutic nanoparticle delivery but not higher vascularization in pulmonary tumors. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Luker in this issue.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Magnetic Resonance Imaging/methods , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thyroid Carcinoma, Anaplastic/diagnostic imaging , Thyroid Carcinoma, Anaplastic/drug therapy , Animals , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents/immunology , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Female , Ferrosoferric Oxide , Immunity/immunology , Mice , Nanoparticles , Proto-Oncogene Proteins B-raf/immunology , Thyroid Carcinoma, Anaplastic/immunology , Tumor-Associated Macrophages/immunology
3.
Am J Gastroenterol ; 115(11): 1830-1839, 2020 11.
Article in English | MEDLINE | ID: mdl-33156102

ABSTRACT

INTRODUCTION: Adult standards for gastric emptying scintigraphy, including the type of meal and range of normative values for percent gastric emptying, are routinely used in pediatric practice, but to date have not been validated. The purpose of this study is to determine whether the use of adult criteria for gastric emptying scintigraphy is valid for children and whether alternative nonstandard meals can also be offered based on these criteria. METHODS: This retrospective study analyzed patients (n = 1,151 total) who underwent solid-phase gastric emptying scintigraphy. Patients were stratified into normal and delayed gastric emptying cohorts based on adult criteria, i.e., with normal gastric emptying defined as ≤10% gastric retention at 4 hours. Patients were further stratified based on the type of meal, namely complete or partial adult standard meals or alternative cheese-based meals. Percent gastric retention values at 1, 2, 3, and 4 hours were compared. RESULTS: The median (95% upper reference limit) percentage gastric retention values for the complete standard meal were 72% (93%) at 1 hour, 39% (65%) at 2 hours, 15% (33%) at 3 hours, and 6% (10 %) at 4 hours. By comparison, the values for cheese-based meals were 60% (87%) at 1 hour, 29% (61%) at 2 hours, 10% (30%) at 3 hours, and 5% (10%) at 4 hours. Consumption of at least 50% of the standard meal yielded similar retention percentages; 68% (89%) at 1 hour, 32% (57%) at 2 hours, 10% (29%) at 3 hours, and 5% (10%) at 4 hours. There were no significant age- or sex-specific differences using the adult criteria. DISCUSSION: The adult normative standards for gastric emptying scintigraphy are applicable for use in the pediatric population. These same standards can be also be applied to nonstandard meal options, including cheese-based alternative meals and partial standard meals.


Subject(s)
Diagnostic Techniques, Digestive System , Gastric Emptying , Meals , Radionuclide Imaging/methods , Radiopharmaceuticals , Adolescent , Cheese , Child , Eggs , Female , Food , Humans , Male , Reference Values , Young Adult
4.
ACS Nano ; 12(12): 12015-12029, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30508377

ABSTRACT

Tumor-associated macrophages (TAMs) are widely implicated in cancer progression, and TAM levels can influence drug responses, particularly to immunotherapy and nanomedicines. However, it has been difficult to quantify total TAM numbers and their dynamic spatiotemporal distribution in a non-invasive and translationally relevant manner. Here, we address this need by developing a pharmacokinetically optimized, 64Cu-labeled polyglucose nanoparticle (Macrin) for quantitative positron emission tomography (PET) imaging of macrophages in tumors. By combining PET with high-resolution in vivo confocal microscopy and ex vivo imaging of optically cleared tissue, we found that Macrin was taken up by macrophages with >90% selectivity. Uptake correlated with the content of macrophages in both healthy tissue and tumors ( R2 > 0.9) and showed striking heterogeneity in the TAM content of an orthotopic and immunocompetent mouse model of lung carcinoma. In a proof-of-principle application, we imaged Macrin to monitor the macrophage response to neo-adjuvant therapy, using a panel of chemotherapeutic and γ-irradiation regimens. Multiple treatments elicited 180-650% increase in TAMs. Imaging identified especially TAM-rich tumors thought to exhibit enhanced permeability and retention of nanotherapeutics. Indeed, these TAM-rich tumors accumulated >700% higher amounts of a model poly(d,l-lactic- co-glycolic acid)- b-polyethylene glycol (PLGA-PEG) therapeutic nanoparticle compared to TAM-deficient tumors, suggesting that imaging may guide patient selection into nanomedicine trials. In an orthotopic breast cancer model, chemoradiation enhanced TAM and Macrin accumulation in tumors, which corresponded to the improved delivery and efficacy of two model nanotherapies, PEGylated liposomal doxorubicin and a TAM-targeted nanoformulation of the toll-like receptor 7/8 agonist resiquimod (R848). Thus, Macrin imaging offers a selective and translational means to quantify TAMs and inform therapeutic decisions.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Glucans/chemistry , Isotope Labeling , Lung Neoplasms/drug therapy , Macrophages/drug effects , Nanoparticles/chemistry , Animals , Copper Radioisotopes , Drug Screening Assays, Antitumor , Female , Lung Neoplasms/diagnostic imaging , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Neoadjuvant Therapy , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL