Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Hazard Mater ; 470: 134182, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583202

ABSTRACT

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Subject(s)
Carbamazepine , Hydrogen Peroxide , Iron , Oxidation-Reduction , Sewage , Tea , Water Pollutants, Chemical , Carbamazepine/chemistry , Hydrogen Peroxide/chemistry , Tea/chemistry , Sewage/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Polyphenols/chemistry
2.
Sci Total Environ ; 902: 166111, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567299

ABSTRACT

Shrimp farming has strongly developed in recent years, and became an important economic sector that helps create jobs and increase incomes for Vietnamese. However, the aquatic environment has also been greatly affected by the development due to the amount of wastewater discharged from shrimp farms. Among biological processes used for treating shrimp farming wastewater, the application of microalgae-bacteria co-culture is considered high potential due to its treatment and energy saving. Consequently, a photobioreactor operated with microalgae-bacteria co-culture was employed to treat shrimp farming wastewater. The salinity of wastewater and the operating condition (ratio of biomass retention time and hydraulic retention time, BRT/HRT) are the major factors affecting pollutant removal. Thus, this study investigated the effects of salinities of 0.5-20 ppt and BRT/HRT ratios of 1.5-16 on the removal performance. The results indicated that the nutrient removal was reduced when PBR operated under salinity over than 10 ppt and BRT/HRT over 5.5. Particularly, the nitrogen and phosphorus removal rates were achieved 6.56 ± 1.33 gN m-3 d-1 and 1.49 ± 0.59 gP m-3 d-1, and the removal rates decreased by 2-4 times under a salinity >10 ppt and 2-6 times under a BRT/HRT ratio >5.5. Whereas, organic matter treatment seems not to be affected when the removal rate was maintained at 28-34 gCOD m-3 d-1 under various conditions.


Subject(s)
Microalgae , Wastewater , Symbiosis , Salinity , Bacteria , Agriculture , Biomass , Nitrogen/analysis , Phosphorus
3.
Chemosphere ; 309(Pt 1): 136537, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36150485

ABSTRACT

Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasibility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m-3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 °C. Results showed that specific methane production of UASB was 249 ± 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m-3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side-stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 µm) in the ultrafiltration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.


Subject(s)
Refuse Disposal , Wastewater , Wastewater/chemistry , Biofuels , Sewage/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Food , Fertilizers , Methane/chemistry , Bioreactors , Nitrogen , Nutrients , Soil
4.
Sci Total Environ ; 832: 155083, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35395309

ABSTRACT

The global rise in industrialization and vehicularization has led to the increasing trend in the use of different crude oil types. Among these mobil oil has major application in automobiles and different machines. The combustion of mobil oil renders a non-usable form that ultimately enters the environment thereby causing problems to environmental health. The aliphatic and aromatic hydrocarbon fraction of mobil oil has serious human and environmental health hazards. These components upon interaction with soil affect its fertility and microbial diversity. The recent advancement in the omics approach viz. metagenomics, metatranscriptomics and metaproteomics has led to increased efficiency for the use of microbial based remediation strategy. Additionally, the use of biosurfactants further aids in increasing the bioavailability and thus biodegradation of crude oil constituents. The combination of more than one approach could serve as an effective tool for efficient reduction of oil contamination from diverse ecosystems. To the best of our knowledge only a few publications on mobil oil have been published in the last decade. This systematic review could be extremely useful in designing a micro-bioremediation strategy for aquatic and terrestrial ecosystems contaminated with mobil oil or petroleum hydrocarbons that is both efficient and feasible. The state-of-art information and future research directions have been discussed to address the issue efficiently.


Subject(s)
Petroleum Pollution , Petroleum , Soil Pollutants , Biodegradation, Environmental , Ecosystem , Humans , Hydrocarbons/metabolism , Petroleum/metabolism , Soil Microbiology , Soil Pollutants/analysis
5.
Bioengineered ; 13(1): 1073-1089, 2022 01.
Article in English | MEDLINE | ID: mdl-35001798

ABSTRACT

This review investigates the findings of the most up-to-date literature on bioremediation via composting technology. Studies on bioremediation via composting began during the 1990s and have exponentially increased over the years. A total of 655 articles have been published since then, with 40% published in the last six years. The robustness, low cost, and easy operation of composting technology make it an attractive bioremediation strategy for organic contaminants prevalent in soils and sediment. Successful pilot-and large-scale bioremediation of organic contaminants, e.g., total petroleum hydrocarbons, plasticizers, and persistent organic pollutants (POPs) by composting, has been documented in the literature. For example, composting could remediate >90% diesel with concentrations as high as 26,315 mg kg-a of initial composting material after 24 days. Composting has unique advantages over traditional single- and multi-strain bioaugmentation approaches, including a diverse microbial community, ease of operation, and the ability to handle higher concentrations. Bioremediation via composting depends on the diverse microbial community; thus, key parameters, including nutrients (C/N ratio = 25-30), moisture (55-65%), and oxygen content (O2 > 10%) should be optimized for successful bioremediation. This review will provide bioremediation and composting researchers with the most recent finding in the field and stimulate new research ideas.


Subject(s)
Composting/methods , Geologic Sediments/chemistry , Soil Pollutants/chemistry , Biodegradation, Environmental , Hydrocarbons/analysis , Periodicals as Topic/trends , Pesticides/analysis , Petroleum/analysis
6.
Chemosphere ; 288(Pt 1): 132459, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34619254

ABSTRACT

The demand for ultrapure water (UPW) in the semiconductor industry has increased in recent years, while the idea to use reclaimed water instead of tap water for UPW production has also attracted more attention. However, since urea concentration in reclaimed water is higher than that in tap water, UPW production has not been efficient. To resolve this problem, this study aims to develop a new spent coffee grounds based biochar (SCG-BC)/persulfate catalytic system as a pretreatment unit. The objective is to enhance urea removal from reclaimed water so that UPW production is more effective. In this study, the biochar used was prepared from spent coffee grounds with detailed characterization. Results strongly suggested that the urea removed by SCG-BC/persulfate catalytic system was very encouraging (up to 73%). The best possible dosages for SCG-BC and persulfate for urea removal were 0.2 and 2.0 g L-1, respectively. Furthermore, this system could remove urea effectively in a wide range of pH (3-10). Moreover, the characterizations of SCG-BC (graphite C, defective edges and functional groups, i.e. -OH, CO, carboxyl C-O) helped to activate persulfate in the catalytic process. OH• and SO4• - were all involved in this process, while the SO4• - was the main radical for urea degradation.


Subject(s)
Coffee , Water Pollutants, Chemical , Charcoal , Urea , Water , Water Pollutants, Chemical/analysis
7.
J Hazard Mater ; 420: 126636, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34280722

ABSTRACT

The quest for finding an effective photocatalyst for environmental remediation and treatment strategies is attracting considerable attentions from scientists. In this study, a new hybrid material, Cu0.5Mg0.5Fe2O4-TiO2, was designed and fabricated using coprecipitation and sol-gel approaches for degrading organic dyes in wastewater. The prepared hybrid materials were fully characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results revealed that the Cu0.5Mg0.5Fe2O4-TiO2 hybrid material was successfully synthesized with average particle sizes of 40.09 nm for TiO2 and 27.9 nm for Cu0.5Mg0.5Fe2O4. As the calculated bandgap energy of the hybrid material was approximately 2.86 eV, it could harvest photon energy in the visible region. Results indicate that the Cu0.5Mg0.5Fe2O4-TiO2 also had reasonable magnetic properties with a saturation magnetization value of 11.2 emu/g, which is a level of making easy separation from the solution by an external magnet. The resultant Cu0.5Mg0.5Fe2O4-TiO2 hybrid material revealed better photocatalytic performance for rhodamine B dye (consistent removal rate in the 13.96 × 10-3 min-1) compared with free-standing Cu0.5Mg0.5Fe2O4 and TiO2 materials. The recyclability and photocatalytic mechanism of Cu0.5Mg0.5Fe2O4-TiO2 are also well discussed.


Subject(s)
Titanium , Wastewater , Aluminum Oxide , Catalysis , Ferric Compounds , Magnesium Oxide , Rhodamines
8.
Sci Total Environ ; 769: 144451, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33736265

ABSTRACT

With the acceleration of urbanization, the production of urban sludge is increasing rapidly. To minimize resource input and waste output, it is crucial to execute analyses of environmental impact and assessments of sustainability on different technical strategies involving sludge disposal based on Life Cycle Assessment (LCA), which is a great potential mean of environmental management adopted internationally in the 21st century. This review aims to compare the environmental sustainability of existing sludge management schemes with a purpose of nutrient recovery and energy saving, respectively, and also to include the substitution benefits of alternative sludge products. Simultaneously, LCA research regarding the emerging sludge management technologies and sludge recycling (cement, adsorbent, bricks) is analyzed. Additionally, the key aspects of the LCA process are worth noting in the context of the current limitations reviewed here. It is worth emphasizing that no technical remediation method can reduce all environmental damage simultaneously, and these schemes are typically more applicable to the assumed local conditions. Future LCA research should pay more attention to the toxic effects of different sludge treatment methods, evaluate the technical ways of adding pretreatment technology to the 'front end' of the sludge treatment process, and further explore how to markedly reduce environmental damage in order to maximize energy and nutrient recovery from the LCA perspective.

9.
Sci Total Environ ; 753: 142250, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33207468

ABSTRACT

This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.


Subject(s)
Composting , Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons , Soil , Soil Microbiology
11.
Sci Total Environ ; 716: 137015, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32036134

ABSTRACT

A large amount of spent coffee grounds is produced as a processing waste each year during making the coffee beverage. Sulfonamide antibiotics (SAs) are frequently detected in the environment and cause pollution problems. In this study, biochar (BC) and hydrochar (HC) were derived from spent coffee grounds through pyrolysis and hydrothermal carbonization, respectively. Their characteristics and sulfonamide antibiotics adsorption were investigated and compared with reference to adsorption capacity, adsorption isotherm and kinetics. Results showed BC possessed more carbonization and less oxygen-containing functional groups than HC when checked by Elemental Analysis, X-ray diffraction, X-ray photoelectron spectrometry and Fourier transform infrared. These groups affected the adsorption of sulfonamide antibiotics and adsorption mechanism. The maximum adsorption capacities of BC for sulfadiazine (SDZ) and sulfamethoxazole (SMX) were 121.5 µg/g and 130.1 µg/g at 25 °C with the initial antibiotic concentration of 500 µg/L, respectively. Meanwhile the maximum adsorption capacities of HC were 82.2 µg/g and 85.7 µg/g, respectively. Moreover, the adsorption mechanism for SAs adsorbed onto BC may be dominated by π-π electron donor-acceptor interactions, yet the SAs adsorption to HC may be attributed to hydrogen bonds. Further analysis of the adsorption isotherms and kinetics, found that physical and chemical interactions were involved in the SAs adsorption onto BC and HC. Overall, results suggested that: firstly, pyrolysis was an effective thermochemical conversion of spent coffee grounds; and secondly, BC was the more promising adsorbent for removing sulfonamide antibiotics.


Subject(s)
Coffee , Adsorption , Anti-Bacterial Agents , Charcoal , Kinetics , Sulfonamides , Water Pollutants, Chemical
12.
Environ Sci Pollut Res Int ; 27(22): 27172-27180, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30868465

ABSTRACT

Petroleum industry is one of the fastest growing industries, and it significantly contributes to economic growth in developing countries like India. The wastewater from a petroleum industry consist a wide variety of pollutants like petroleum hydrocarbons, mercaptans, oil and grease, phenol, ammonia, sulfide, and other organic compounds. All these compounds are present as very complex form in discharged water of petroleum industry, which are harmful for environment directly or indirectly. Some of the techniques used to treat oily waste/wastewater are membrane technology, photocatalytic degradation, advanced oxidation process, electrochemical catalysis, etc. In this review paper, we aim to discuss past and present scenario of using various treatment technologies for treatment of petroleum industry waste/wastewater. The treatment of petroleum industry wastewater involves physical, chemical, and biological processes. This review also provides scientific literature on knowledge gaps and future research directions to evaluate the effect(s) of various treatment technologies available.


Subject(s)
Petroleum/analysis , Water Pollutants, Chemical , India , Industrial Waste/analysis , Oil and Gas Industry , Waste Disposal, Fluid , Wastewater
13.
Bioresour Technol ; 294: 122218, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31606600

ABSTRACT

Fermentation slurry from food waste (FSFW) generated by acidogenic fermentation at mesophilic temperature was utilized to improve the nutrients removal from wastewater. Organic acids (such as lactate and volatile fatty acids) in the FSFW behaved as readily biodegradable carbon sources, while the particulate and macromolecular organics acted as slowly biodegradable carbon sources during denitrification processes. The FSFW dosage significantly influenced the nitrogen removal performance, and a C/N ratio (in terms of chemical oxygen demand to nitrogen ratio) of 8 could achieve complete denitrification in the batch tests. In a sequencing batch reactor (SBR) using FSFW for long-term wastewater treatment, extracellular polymeric substances (EPS) gradually accumulated, sludge particle size significantly increased, and microbial communities were selectively enriched, which contributed to promoting the nitrogen (>80%) and phosphate (90.1%) removal efficiencies. Overall, the FSFW produced by acidogenic fermentation under mesophilic temperature served as an excellent intermediary between FW valorization and wastewater treatment.


Subject(s)
Refuse Disposal , Wastewater , Bioreactors , Carbon , Denitrification , Fermentation , Food , Nitrogen , Nutrients , Sewage , Waste Disposal, Fluid
14.
Bioresour Technol ; 282: 163-170, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30861445

ABSTRACT

In this study, three semi-pilot scale systems (vertical flow constructed wetland, multi-soil layering, and integrated hybrid systems) for treating real rice noodle wastewater were operated parallelly for the first time in a tropical climate at a loading rate of 50 L/(m2·d) for more than 7 months to determine the optimal conditions and to compare their treatment performance. The results demonstrated that these systems were appropriate for the removal of organics, suspended solids, and total coliform (Tcol). The highest reductions in chemical oxygen demand (CODCr, 73.2%), phosphorus (PO4-P, 54%), and Tcol (4.78 log MPN/100 mL inactivation) were obtained by the integrated hybrid system, while the highest removal efficiencies of ammonium (NH4-N, 60.64%) and suspended solids (80.49%) were achieved in the vertical-flow-constructed wetland and multi-soil layering systems respectively.


Subject(s)
Oryza/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Ammonium Compounds/metabolism , Biological Oxygen Demand Analysis , Food Industry , Phosphorus/metabolism , Pilot Projects , Soil , Wetlands
15.
Environ Int ; 123: 10-19, 2019 02.
Article in English | MEDLINE | ID: mdl-30481673

ABSTRACT

Free ammonia (FA) can pose inhibitory and/or biocidal effects on a variety of microorganisms involved in different biological wastewater treatment process, which is widely presented in wastewater treatment plants (WWTPs) due to the high levels of ammonium in the systems. This review article gives the up-to-date status on several essential roles of FA in biological wastewater treatment processes: the impacts of FA, mechanisms of FA roles, modeling of FA impacts, and implications of FA for wastewater treatment. Specifically, the impacts of FA on both wastewater and sludge treatment lines were firstly summarized, including nitrification, denitrification, anaerobic ammonium oxidation (Anammox), enhanced biological phosphorus removal and anaerobic processes. The involved mechanisms were then analyzed, which indicated FA inhibition can slow specific microbial activities or even reconfigure the microbial community structure, likely due to negative impacts of FA on intracellular pH, specific enzymes and extracellular polymeric substances (EPS), thus causing cell inactivation/lysis. Mathematical models describing the impact of FA on both wastewater and sludge treatment processes were also explored to facilitate process optimization. Finally, the key implications of FA were identified, that is FA can be leveraged to substantially enhance the biodegradability of secondary sludge, which would further improve biological nutrient removal and enhance renewable energy production.


Subject(s)
Ammonia/toxicity , Microbial Consortia/drug effects , Wastewater/chemistry , Water Purification , Biodegradation, Environmental , Bioreactors , Models, Chemical , Nitrification/drug effects , Nitrogen/metabolism , Phosphorus/isolation & purification , Phosphorus/metabolism , Wastewater/microbiology
16.
Bioresour Technol ; 271: 125-135, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30265952

ABSTRACT

Enhancement of nitrogen and phosphate removal using thermophilic fermentation slurry from food waste (FSFW) as external carbon source was investigated. Based on the batch tests, the soluble and particulate fractions of the FSFW acted as easily and slowly biodegradable carbon sources, respectively, and the fermented slurry showed the combined nutrients removal properties of soluble and solid organics. During the long-term operation of a sequencing batch reactor (SBR) with FSFW for wastewater treatment, the sludge particle size increased obviously, the bacterial metabolic capacity improved significantly, and some functional microorganisms were enriched selectively, which significantly promoted the nitrogen removal efficiency (approximately 90%) by enhancing the anoxic denitrification and simultaneous nitrification and denitrification (SND) processes. Moreover, high phosphate removal efficiency (above 98%) was achieved through the aerobic and anoxic phosphate accumulation processes. Thus, using the FSFW as supplementary carbon source is a suitable solution for both food waste disposal and wastewater treatment.


Subject(s)
Carbon/metabolism , Fermentation , Food , Nutrients/metabolism , Sewage , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Denitrification , Nitrification , Nitrogen/metabolism , Particle Size , Phosphates/metabolism , Refuse Disposal , Wastewater
17.
Bioresour Technol ; 273: 573-580, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30476866

ABSTRACT

This study aimed to evaluate treatment performance and membrane fouling of a lab-scale Sponge-MBR under the added ciprofloxacin (CIP) dosages (20; 50; 100 and 200 µg L-1) treating hospital wastewater. The results showed that Sponge-MBR exhibited effective removal of COD (94-98%) during the operation period despite increment of CIP concentrations from 20 to 200 µg L-1. The applied CIP dosage of 200 µg L-1 caused an inhibition of microorganisms in sponges, i.e. significant reduction of the attached biomass and a decrease in the size of suspended flocs. Moreover, this led to deteriorating the denitrification rate to 3-12% compared to 35% at the other lower CIP dosages. Importantly, Sponge-MBR reinforced the stability of CIP removal at various added CIP dosages (permeate of below 13 µg L-1). Additionally, the fouling rate at CIP dosage of 200 µg L-1 was 30.6 times lower compared to the control condition (no added CIP dosage).


Subject(s)
Bioreactors , Ciprofloxacin/pharmacology , Waste Disposal, Fluid/methods , Wastewater/chemistry , Biomass , Hospitals
18.
Environ Pollut ; 238: 85-93, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29547865

ABSTRACT

In this study, a pilot combined sewer system was constructed to characterize the pollutant transformation in sewer sediment. The results showed that particulate contaminants deposited from sewage could be transformed into dissolved matter by distinct pollutant transformation pathways. Although the oxidation-reduction potential (ORP) was varied from -80 mV to -340 mV in different region of the sediment, the fermentation was the dominant process in all regions of the sediment, which induced hydrolysis and decomposition of particulate contaminants. As a result, the accumulation of dissolved organic matter and the variation of ORP values along the sediment depth led to the depth-dependent reproduction characteristics of methanogens and sulfate-reducing bacteria, which were existed in the middle and deep layer of the sediment respectively. However, the diversity of nitrifying and polyphosphate-accumulating bacteria was low in sewer sediment and those microbial communities showed a non-significant correlation with nitrogen and phosphorus contaminants, which indicated that the enrichment of nitrogen and phosphorus contaminants was mainly caused by physical deposition process. Thus, this study proposed a promising pathway to evaluate pollutant transformation and can help provide theoretical foundation for urban sewer improvement.


Subject(s)
Bacteria/metabolism , Environmental Restoration and Remediation/methods , Microbial Consortia/physiology , Sewage/chemistry , Sewage/microbiology , Water Pollutants/chemistry , Bacteria/classification , Bacteria/genetics , Fermentation/physiology , Geologic Sediments/analysis , Geologic Sediments/chemistry , Nitrogen/analysis , Phosphorus/analysis , Polymerase Chain Reaction , Water Pollutants/analysis
19.
Bioresour Technol ; 248(Pt B): 135-139, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28651876

ABSTRACT

This study aims to investigate the effect of adding magnetic powder in the sequencing batch reactor (SBR) on the reactor performance and microbial community. Results indicated that, the magnetic activated sludge sequencing batch reactor (MAS-SBR) had 7.76% and 4.76% higher ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) removal efficiencies than that of the conventional SBR (C-SBR). The MAS-SBR also achieved 6.86% sludge reduction compared with the C-SBR. High-throughput sequencing demonstrated that the dominant phyla of both SBRs (present as ≥1% of the sequence reads) were Protebacteria, Bacteroidetes, Chloroflexi, Saccharibacteria, Chlorobi, Firmicutes, Actinobactoria, Acidobacteria, Planctomycetes and unclassified_Bacteria. The relative abundance of Protebacteria and Bacteroidetes simultaneously declined whereas the other 8 phyla increased following the addition of magnetic powder. Adding magnetic powder in the SBR significantly affected the microbial diversity and richness of activated sludge, consequently affecting the reactor performance.


Subject(s)
Bioreactors , Waste Disposal, Fluid , Wastewater , Nitrogen , Phosphorus , Sewage
20.
Environ Sci Pollut Res Int ; 24(32): 25441-25451, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28936599

ABSTRACT

Performance of an electrocoagulation (EC) process in batch and continuous operating modes was thoroughly investigated and evaluated for enhancing wastewater phosphorus removal under various operating conditions, individually or combined with initial phosphorus concentration, wastewater conductivity, current density, and electrolysis times. The results revealed excellent phosphorus removal (72.7-100%) for both processes within 3-6 min of electrolysis, with relatively low energy requirements, i.e., less than 0.5 kWh/m3 for treated wastewater. However, the removal efficiency of phosphorus in the continuous EC operation mode was better than that in batch mode within the scope of the study. Additionally, the rate and efficiency of phosphorus removal strongly depended on operational parameters, including wastewater conductivity, initial phosphorus concentration, current density, and electrolysis time. Based on experimental data, statistical model verification of the response surface methodology (RSM) (multiple factor optimization) was also established to provide further insights and accurately describe the interactive relationship between the process variables, thus optimizing the EC process performance. The EC process using iron electrodes is promising for improving wastewater phosphorus removal efficiency, and RSM can be a sustainable tool for predicting the performance of the EC process and explaining the influence of the process variables.


Subject(s)
Phosphorus/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Electrolysis , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL