Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Nat Med ; 76(3): 621-633, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35218459

ABSTRACT

This study aims to clarify the bioactive constituents responsible for the anti-dementia effects of Ocimum sanctum Linn. ethanolic extract (OS) using olfactory bulbectomized (OBX) mice, an animal model of dementia. The effects of OS or its extract further fractionated with n-hexane (OS-H), ethyl acetate (OS-E), and n-butanol (OS-B) on the spatial cognitive deficits of OBX mice were elucidated by the modified Y-maze tests. The effects of the major constituents of the most active OS fraction were also elucidated using the reference drug donepezil. The administration of OS and OS-E ameliorated the spatial cognitive deficits caused by OBX, whereas OS-H or OS-B had no effect. Two major constituents, ursolic acid (URO) and oleanolic acid (OLE), and three minor constituents were isolated from OS-E. URO (6 and 12 mg/kg) and OLE (24 mg/kg) attenuated the OBX-induced cognitive deficits. URO (6 mg/kg) and donepezil reversed the OBX-induced down-regulation of vascular endothelial growth factor (VEGF) and choline acetyltransferase expression levels in the hippocampus. URO inhibited the ex vivo activity of acetylcholinesterase with similar efficacy to donepezil. URO inhibited the in vitro activity of acetylcholinesterase (IC50 = 106.5 µM), while the effects of OS, OS-E, and other isolated compounds were negligible. These findings suggest that URO and OLE are responsible for the anti-dementia action of OS extract, whereas URO possesses a more potent anti-dementia effect than its isomer OLE. The effects of URO are, at least in part, mediated by normalizing the function of central cholinergic systems and VEGF protein expression.


Subject(s)
Ocimum sanctum , Oleanolic Acid , Acetylcholinesterase , Animals , Donepezil , Mice , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Olfactory Bulb/surgery , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Triterpenes , Vascular Endothelial Growth Factor A , Ursolic Acid
2.
Article in English | MEDLINE | ID: mdl-34306149

ABSTRACT

This study aimed to clarify the antidementia effects of ethanolic extract of Ocimum sanctum Linn. (OS) and its underlying mechanisms using olfactory bulbectomized (OBX) mice. OBX mice were treated daily with OS or a reference drug, donepezil (DNP). Spatial and nonspatial working memory performance was measured using a modified Y maze test and a novel object recognition test, respectively. Brain tissues of the animals were subjected to histochemical and neurochemical analysis. OS treatment attenuated OBX-induced impairment of spatial and nonspatial working memories. OBX induced degeneration of septal cholinergic neurons, enlargement of the lateral ventricles, and suppression of hippocampal neurogenesis. OS and DNP treatment also depressed these histological damages. OS administration reduced ex vivo activity of acetylcholinesterase in the brain. OBX diminished the expression levels of genes coding vascular endothelial growth factor (VEGF) and VEGF receptor type 2 (VEGFR2). Treatment with OS and DNP reversed OBX-induced decrease in VEGF gene and protein expression levels without affecting the expression of the VEGFR2 gene. These results demonstrate that the administration of OS can lessen the cognitive deficits and neurohistological damages of OBX and that these actions are, at least in part, mediated by the enhancement of central cholinergic systems and VEGF expression.

3.
Int J Mol Sci ; 21(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397562

ABSTRACT

Bacopa monnieri L. Wettst. (BM) is a botanical component of Ayurvedic medicines and of dietary supplements used worldwide for cognitive health and function. We previously reported that administration of BM alcoholic extract (BME) prevents trimethyltin (TMT)-induced cognitive deficits and hippocampal cell damage and promotes TMT-induced hippocampal neurogenesis. In this study, we demonstrate that administration of BME improves spatial working memory in adolescent (5-week- old) healthy mice but not adult (8-week-old) mice. Moreover, improved spatial working memory was retained even at 4 weeks after terminating 1-week treatment of adolescent mice. One-week BME treatment of adolescent mice significantly enhanced hippocampal BrdU incorporation and expression of genes involved in neurogenesis determined by RNAseq analysis. Cell death, as detected by histochemistry, appeared not to be significant. A significant increase in neurogenesis was observed in the dentate gyrus region 4 weeks after terminating 1-week treatment of adolescent mice with BME. Bacopaside I, an active component of BME, promoted the proliferation of neural progenitor cells in vitro in a concentration-dependent manner via the facilitation of the Akt and ERK1/2 signaling. These results suggest that BME enhances spatial working memory in healthy adolescent mice by promoting hippocampal neurogenesis and that the effects of BME are due, in significant amounts, to bacopaside I.


Subject(s)
Bacopa/chemistry , Dentate Gyrus/drug effects , Memory Disorders/drug therapy , Memory, Short-Term/drug effects , Neurogenesis/drug effects , Nootropic Agents/therapeutic use , Plant Extracts/therapeutic use , Spatial Memory/drug effects , Animals , Cells, Cultured , DNA Replication/drug effects , Dentate Gyrus/physiopathology , Gene Expression Regulation/drug effects , Male , Maze Learning/drug effects , Medicine, Ayurvedic , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Mice , Neural Stem Cells/drug effects , Neurogenesis/genetics , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , RNA-Seq , Saponins/pharmacology , Sexual Maturation , Signal Transduction/drug effects , Trimethyltin Compounds/toxicity , Triterpenes/pharmacology
4.
Biol Pharm Bull ; 42(8): 1384-1393, 2019.
Article in English | MEDLINE | ID: mdl-31366873

ABSTRACT

We previously demonstrated that Bacopa monnier (L.) WETTST. extract (BME) ameliorated cognitive dysfunction in animal models of dementia by enhancing synaptic plasticity-related signaling in the hippocampus and protecting cholinergic neurons in the medial septum. To further clarify the pharmacological features and availability of BME as a novel anti-dementia agent, we investigated whether BME affects neuronal repair using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampus. Mice pretreated with TMT (2.8 mg/kg, intraperitoneally (i.p.)) on day 0 were given BME (50 mg/kg, per os (p.o.)) once daily for 15-30 d. Cognitive performance of the animals was elucidated twice by the object location test and modified Y maze test on days 17-20 (Phase I) and days 32-35 (Phase II) or by the passive avoidance test on Phase II. TMT impaired hippocampus-dependent spatial working memory and amygdala-dependent fear-motivated memory. The administration of BME significantly prevented TMT-induced cognitive deficits. The protective effects of BME on the spatial memory deficits were confirmed by Nissl staining of hippocampal tissues and propidium iodide staining of organotypic hippocampal slice cultures. Immunohistochemical studies conducted on days 17 and 32 revealed that thirty days of treatment with BME increased the number of 5-bromo-2'-deoxyuridine (BrdU)-immunopositive cells in the dentate gyrus region of TMT-treated mice, whereas fifteen days of treatment with BME had no effect. These results suggest that BME ameliorates TMT-induced cognition dysfunction mainly via protecting the hippocampal neurons from TMT-induced hippocampal lesions and partly via promoting neuroregeneration in the dentate gyrus regions.


Subject(s)
Bacopa , Cognitive Dysfunction/drug therapy , Memory Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Plant Extracts/therapeutic use , Animals , Cognitive Dysfunction/pathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Male , Memory Disorders/pathology , Mice , Nerve Regeneration/drug effects , Neurons/drug effects , Neurons/pathology , Neurotoxicity Syndromes/pathology , Trimethyltin Compounds
5.
Neurochem Res ; 38(10): 2201-15, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23949198

ABSTRACT

This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.


Subject(s)
Bacopa/chemistry , Memory Disorders/drug therapy , Olfactory Bulb/physiology , Plant Extracts/therapeutic use , Acetylcholinesterase/metabolism , Acoustic Stimulation , Animals , Choline O-Acetyltransferase/biosynthesis , Choline O-Acetyltransferase/metabolism , Fear , Male , Maze Learning/drug effects , Mice , Neuronal Plasticity/drug effects , Phytotherapy , Scopolamine/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL