Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Genet ; 47(7): 814-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26005865

ABSTRACT

The major pathway by which the brain obtains essential omega-3 fatty acids from the circulation is through a sodium-dependent lysophosphatidylcholine (LPC) transporter (MFSD2A), expressed in the endothelium of the blood-brain barrier. Here we show that a homozygous mutation affecting a highly conserved MFSD2A residue (p.Ser339Leu) is associated with a progressive microcephaly syndrome characterized by intellectual disability, spasticity and absent speech. We show that the p.Ser339Leu alteration does not affect protein or cell surface expression but rather significantly reduces, although not completely abolishes, transporter activity. Notably, affected individuals displayed significantly increased plasma concentrations of LPCs containing mono- and polyunsaturated fatty acyl chains, indicative of reduced brain uptake, confirming the specificity of MFSD2A for LPCs having mono- and polyunsaturated fatty acyl chains. Together, these findings indicate an essential role for LPCs in human brain development and function and provide the first description of disease associated with aberrant brain LPC transport in humans.


Subject(s)
Fatty Acids, Omega-3/metabolism , Microcephaly/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Animals , Base Sequence , Biological Transport , Blood-Brain Barrier/metabolism , Case-Control Studies , Child , Child, Preschool , Female , Genetic Association Studies , HEK293 Cells , Humans , Infant , Lysophosphatidylcholines/blood , Male , Microcephaly/blood , Mutation, Missense , Pedigree , Sequence Analysis, DNA , Symporters , Syndrome
2.
Nat Genet ; 47(7): 809-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26005868

ABSTRACT

Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.


Subject(s)
Brain/metabolism , Fatty Acids, Omega-3/metabolism , Microcephaly/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Case-Control Studies , Child , Child, Preschool , Consanguinity , Female , Genes, Lethal , Genetic Association Studies , HEK293 Cells , Humans , Infant , Male , Mice, Knockout , Mutation, Missense , Symporters , Syndrome , Zebrafish
3.
Am J Pathol ; 180(4): 1465-73, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22306734

ABSTRACT

Wound healing is a complex process that involves coordinated interactions between diverse immunological and biological systems. Long-term wounds remain a challenging clinical problem, affecting approximately 6 million patients per year, with a high economic impact. To exacerbate the problem, these wounds render the individual susceptible to life-threatening microbial infections. Because current therapeutic strategies have proved suboptimal, it is imperative to focus on new therapeutic approaches and the development of technologies for both short- and long-term wound management. In recent years, nitric oxide (NO) has emerged as a critical molecule in wound healing, with NO levels increasing rapidly after skin damage and gradually decreasing as the healing process progresses. In this study, we examined the effects of a novel NO-releasing nanoparticle technology on wound healing in mice. The results show that the NO nanoparticles (NO-np) significantly accelerated wound healing. NO-np modified leukocyte migration and increased tumor growth factor-ß production in the wound area, which subsequently promoted angiogenesis to enhance the healing process. By using human dermal fibroblasts, we demonstrate that NO-np increased fibroblast migration and collagen deposition in wounded tissue. Together, these data show that NO-releasing nanoparticles have the ability to modulate and accelerate wound healing in a pleiotropic manner.


Subject(s)
Collagen/metabolism , Drug Delivery Systems/methods , Fibroblasts/drug effects , Nanoparticles , Nitric Oxide/administration & dosage , Wound Healing/drug effects , Administration, Cutaneous , Animals , Cell Movement/drug effects , Cells, Cultured , Drug Evaluation, Preclinical/methods , Female , Fibroblasts/physiology , Humans , Mice , Mice, Inbred BALB C , Neovascularization, Physiologic/drug effects , Neutrophil Infiltration/drug effects , Nitric Oxide/biosynthesis , Nitric Oxide/pharmacology , Nitric Oxide Synthase Type II/metabolism , Real-Time Polymerase Chain Reaction/methods , Skin/blood supply , Skin/injuries , Skin/metabolism , Skin/pathology , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL