Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
JACC Clin Electrophysiol ; 10(4): 637-650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38276927

ABSTRACT

BACKGROUND: Voltage mapping to detect ventricular scar is important for guiding catheter ablation, but the field-of-view of unipolar, bipolar, conventional, and microelectrodes as it relates to the extent of viable myocardium (VM) is not well defined. OBJECTIVES: The purpose of this study was to evaluate electroanatomic voltage-mapping (EAVM) with different-size electrodes for identifying VM, validated against high-resolution ex-vivo cardiac magnetic resonance (HR-LGE-CMR). METHODS: A total of 9 swine with early-reperfusion myocardial infarction were mapped with the QDOT microcatheter. HR-LGE-CMR (0.3-mm slices) were merged with EAVM. At each EAVM point, the underlying VM in multisize transmural cylinders and spheres was quantified from ex vivo CMR and related to unipolar and bipolar voltages recorded from conventional and microelectrodes. RESULTS: In each swine, 220 mapping points (Q1, Q3: 216, 260 mapping points) were collected. Infarcts were heterogeneous and nontransmural. Unipolar and bipolar voltage increased with VM volumes from >175 mm3 up to >525 mm3 (equivalent to a 5-mm radius cylinder with height >6.69 mm). VM volumes in subendocardial cylinders with 1- or 3-mm depth correlated poorly with all voltages. Unipolar voltages recorded with conventional and microelectrodes were similar (difference 0.17 ± 2.66 mV) and correlated best to VM within a sphere of radius 10 and 8 mm, respectively. Distance-weighting did not improve the correlation. CONCLUSIONS: Voltage increases with transmural volume of VM but correlates poorly with small amounts of VM, which limits EAVM in defining heterogeneous scar. Microelectrodes cannot distinguish thin from thick areas of subendocardial VM. The field-of-view for unipolar recordings for microelectrodes and conventional electrodes appears to be 8 to 10 mm, respectively, and unexpectedly similar.


Subject(s)
Myocardial Infarction , Animals , Swine , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Magnetic Resonance Imaging/methods , Gadolinium , Electrophysiologic Techniques, Cardiac/instrumentation , Electrophysiologic Techniques, Cardiac/methods , Microelectrodes , Electrodes , Myocardium/pathology , Contrast Media
2.
Europace ; 26(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38289720

ABSTRACT

Cardiac electrophysiology is an evolving field that relies heavily on costly device- and catheter-based technologies. An increasing number of patients with heart rhythm disorders are becoming eligible for cardiac interventions, not least due to the rising prevalence of atrial fibrillation and increased longevity in the population. Meanwhile, the expansive costs of healthcare face finite societal resources, and a cost-conscious approach to new technologies is critical. Cost-effectiveness analyses support rational decision-making in healthcare by evaluating the ratio of healthcare costs to health benefits for competing therapies. They may, however, be subject to significant uncertainty and bias. This paper aims to introduce the basic concepts, framework, and limitations of cost-effectiveness analyses to clinicians including recent examples from clinical electrophysiology and device therapy.


Subject(s)
Atrial Fibrillation , Electrophysiologic Techniques, Cardiac , Humans , Cost-Benefit Analysis , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/therapy , Health Care Costs , Treatment Outcome , Quality-Adjusted Life Years
3.
Porcine Health Manag ; 8(1): 46, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333767

ABSTRACT

Neomycin is a concentration-dependant aminoglycoside antimicrobial used to treat enterotoxigenic Escherichia coli (ETEC)-related post-weaning diarrhoea (PWD) in pigs. The objective was to compare the efficacy of neomycin administered in a single high dose (50,000 IU/kg) and a standard dose and frequency (25,000 IU/kg daily for 3 consecutive days) in reducing the number of pigs with clinical PWD. We also aimed to evaluate the development of antimicrobial resistance in E. coli following neomycin treatment. The study was performed in a Danish herd not using medicinal zinc oxide and experiencing outbreaks of PWD caused by ETEC in the first week after weaning. Pigs from six batches with perianal faecal staining on days 4-6 after weaning and a faecal score of 3-4 were ear tagged and treated with neomycin. Pens were randomly assigned to a treatment group before inclusion. A total of 772 pigs (471 in the control group and 301 in the experimental group) were included and treated orally. The apparent prevalence of diarrhoea on the first day of inclusion across six batches (n = 1,875) was 27%. The efficacy of the neomycin treatment strategy was 86% for the control group and 91% for the single high-dose group (p = 0.043), and the mean percentage (standard deviation (sd)) of haemolytic E. coli-like colonies was 12% (26) and 26% (37) (p < 0.001), respectively. Neomycin resistance did not differ between groups. Before treatment, all analysed isolates were identified as ETEC (n = 142), while after treatment, 91% were identified as ETEC (n = 69) and 9% (n = 7) as non-ETEC E. coli (without fimbria or toxins). A higher cure rate in the single high-dose group suggests that ETEC-related PWD can be treated with a single high dose of 50,000 IU/kg of neomycin, thereby reducing antimicrobial use by 33% compared to the standard treatment of 25,000 IU/kg for 3 consecutive days. The study indicated a higher number of haemolytic E. coli in the single high-dose group after treatment, but no evidence of increased neomycin resistance in coliforms was observed compared to the standard treatment.

4.
NPJ Biofilms Microbiomes ; 8(1): 84, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261538

ABSTRACT

Recent studies have shown that probiotic supplementation has beneficial effects on bone metabolism. In a randomized controlled trial (RCT) we demonstrated that supplementation of Lactobacillus reuteri ATCC PTA 6475 reduced bone loss in older women with low bone mineral density. To investigate the mechanisms underlying the effect of L. reuteri ATCC PTA 6475 on bone metabolism, 20 women with the highest changes (good responders) and the lowest changes (poor responders) in tibia total volumetric BMD after one-year supplementation were selected from our previous RCT. In the current study we characterized the gut microbiome composition and function as well as serum metabolome in good responders and poor responders to the probiotic treatment as a secondary analysis. Although there were no significant differences in the microbial composition at high taxonomic levels, gene richness of the gut microbiota was significantly higher (P < 0.01 by the Wilcoxon rank-sum test) and inflammatory state was improved (P < 0.05 by the Wilcoxon signed-rank test) in the good responders at the end of the 12-month daily supplementation. Moreover, detrimental changes including the enrichment of E. coli (adjusted P < 0.05 by DESeq2) and its biofilm formation (P < 0.05 by GSA) observed in the poor responders were alleviated in the good responders by the treatment. Our results indicate that L. reuteri ATCC PTA 6475 supplementation has the potential to prevent a deterioration of the gut microbiota and inflammatory status in elderly women with low bone mineral density, which might have beneficial effects on bone metabolism.


Subject(s)
Bone Diseases, Metabolic , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Probiotics , Female , Humans , Aged , Limosilactobacillus reuteri/metabolism
5.
Animals (Basel) ; 12(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35158623

ABSTRACT

Vitamin D is essential for sow health and productivity. Standard sow feed is therefore supplemented with vitamin D3 or 25-hydroxyvitamin D3 (25(OH)D3). However, it is uncertain whether the levels achieved are adequate for optimal performance. Currently, information on serum levels of vitamin D in pigs reared under both indoor and outdoor conditions is lacking. In August 2020, we obtained blood samples from 97 organic newly weaned sows housed outdoors during pregnancy and farrowing and used these to test for vitamin D in serum. The average concentration was 67 ± 16 ng 25(OH)D3/mL with a range of 32 to 134 ng 25(OH)D3/mL. The vitamin D3 content was 21 ± 7 ng/mL, ranging from 9 to 48 ng/mL. The average number of hours of sun from June to August was 7.0 ± 0.5 h/day. Parity, farm and body condition score did not significantly affect serum levels of 25(OH)D3.

6.
Mol Metab ; 55: 101392, 2022 01.
Article in English | MEDLINE | ID: mdl-34781035

ABSTRACT

OBJECTIVE: Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (GLP-1) and peptide YY3-36 (PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce. METHODS: In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions. RESULTS: Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous ß-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. CONCLUSIONS: These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous ß-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Obesity/metabolism , Peptide YY/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Eating/drug effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Gastric Bypass , Glucagon-Like Peptide-1 Receptor/metabolism , Hypothalamus , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/physiopathology , Peptide YY/physiology , Weight Loss
7.
BMJ Open ; 11(7): e044674, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230015

ABSTRACT

INTRODUCTION: Contractures are frequent causes of reduced mobility in children with cerebral palsy (CP) already at the age of 2-3 years. Reduced muscle use and muscle growth have been suggested as key factors in the development of contractures, suggesting that effective early prevention may have to involve stimuli that can facilitate muscle growth before the age of 1 year. The present study protocol was developed to assess the effectiveness of an early multicomponent intervention, CONTRACT, involving family-oriented and supervised home-based training, diet and electrical muscle stimulation directed at facilitating muscle growth and thus reduce the risk of contractures in children at high risk of CP compared with standard care. METHODS AND ANALYSIS: A two-group, parallel, open-label randomised clinical trial with blinded assessment (n=50) will be conducted. Infants diagnosed with CP or designated at high risk of CP based on abnormal neuroimaging or absent fidgety movement determined as part of General Movement Assessment, age 9-17 weeks corrected age (CA) will be recruited. A balanced 1:1 randomisation will be made by a computer. The intervention will last for 6 months aiming to support parents in providing daily individualised, goal-directed activities and primarily in lower legs that may stimulate their child to move more and increase muscle growth. Guidance and education of the parents regarding the nutritional benefits of docosahexaenic acid (DHA) and vitamin D for the developing brain and muscle growth will be provided. Infants will receive DHA drops as nutritional supplements and neuromuscular stimulation to facilitate muscle growth. The control group will receive standard care as offered by their local hospital or community. Outcome measures will be taken at 9, 12, 18, 24, 36 and 48 months CA. Primary and secondary outcome measure will be lower leg muscle volume and stiffness of the triceps surae musculotendinous unit together with infant motor profile, respectively. ETHICS AND DISSEMINATION: Full approval from the local ethics committee, Danish Committee System on Health Research Ethics, Region H (H-19041562). Experimental procedures conform with the Declaration of Helsinki. TRIAL REGISTRATION NUMBER: NCT04250454. EXPECTED RECRUITMENT PERIOD: 1 January 2021-1 January 2025.


Subject(s)
Cerebral Palsy , Contracture , Cerebral Palsy/prevention & control , Child, Preschool , Contracture/prevention & control , Early Intervention, Educational , Humans , Infant , Parents , Physical Therapy Modalities , Randomized Controlled Trials as Topic
8.
JBMR Plus ; 5(4): e10478, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33869994

ABSTRACT

Osteoporosis and its associated fractures are highly prevalent in older women. Recent studies have shown that gut microbiota play important roles in regulating bone metabolism. A previous randomized controlled trial (RCT) found that supplementation with Lactobacillus reuteri ATCC PTA 6475 (L.reuteri) led to substantially reduced bone loss in older women with low BMD. However, the total metabolic effects of L. reuteri supplementation on older women are still not clear. In this study, a post hoc analysis (not predefined) of serum metabolomic profiles of older women from the previous RCT was performed to investigate the metabolic dynamics over 1 year and to evaluate the effects of L. reuteri supplementation on human metabolism. Distinct segregation of the L. reuteri and placebo groups in response to the treatment was revealed by partial least squares-discriminant analysis. Although no individual metabolite was differentially and significantly associated with treatment after correction for multiple testing, 97 metabolites responded differentially at any one time point between L. reuteri and placebo groups (variable importance in projection score >1 and p value <0.05). These metabolites were involved in multiple processes, including amino acid, peptide, and lipid metabolism. Butyrylcarnitine was particularly increased at all investigated time points in the L. reuteri group compared with placebo, indicating that the effects of L. reuteri on bone loss are mediated through butyrate signaling. Furthermore, the metabolomic profiles in a case (low BMD) and control population (high BMD) of elderly women were analyzed to confirm the associations between BMD and the identified metabolites regulated by L. reuteri supplementation. The amino acids, especially branched-chain amino acids, showed association with L. reuteri treatment and with low BMD in older women, and may serve as potential therapeutic targets. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Eur J Heart Fail ; 22(12): 2349-2369, 2020 12.
Article in English | MEDLINE | ID: mdl-33136300

ABSTRACT

Cardiac resynchronization therapy (CRT) is one of the most effective therapies for heart failure with reduced ejection fraction and leads to improved quality of life, reductions in heart failure hospitalization rates and all-cause mortality. Nevertheless, up to two-thirds of eligible patients are not referred for CRT. Furthermore, post-implantation follow-up is often fragmented and suboptimal, hampering the potential maximal treatment effect. This joint position statement from three European Society of Cardiology Associations, Heart Failure Association (HFA), European Heart Rhythm Association (EHRA) and European Association of Cardiovascular Imaging (EACVI), focuses on optimized implementation of CRT. We offer theoretical and practical strategies to achieve more comprehensive CRT referral and post-procedural care by focusing on four actionable domains: (i) overcoming CRT under-utilization, (ii) better understanding of pre-implant characteristics, (iii) abandoning the term 'non-response' and replacing this by the concept of disease modification, and (iv) implementing a dedicated post-implant CRT care pathway.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Critical Pathways , Health Services Misuse , Heart Failure/therapy , Humans , Quality of Life , Referral and Consultation , Treatment Outcome
10.
Proc Natl Acad Sci U S A ; 117(37): 22974-22983, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873649

ABSTRACT

Medium-chain fatty alcohols (MCFOHs, C6 to C12) are potential substitutes for fossil fuels, such as diesel and jet fuels, and have wide applications in various manufacturing processes. While today MCFOHs are mainly sourced from petrochemicals or plant oils, microbial biosynthesis represents a scalable, reliable, and sustainable alternative. Here, we aim to establish a Saccharomyces cerevisiae platform capable of selectively producing MCFOHs. This was enabled by tailoring the properties of a bacterial carboxylic acid reductase from Mycobacterium marinum (MmCAR). Extensive protein engineering, including directed evolution, structure-guided semirational design, and rational design, was implemented. MmCAR variants with enhanced activity were identified using a growth-coupled high-throughput screening assay relying on the detoxification of the enzyme's substrate, medium-chain fatty acids (MCFAs). Detailed characterization demonstrated that both the specificity and catalytic activity of MmCAR was successfully improved and a yeast strain harboring the best MmCAR variant generated 2.8-fold more MCFOHs than the strain expressing the unmodified enzyme. Through deletion of the native MCFA exporter gene TPO1, MCFOH production was further improved, resulting in a titer of 252 mg/L for the final strain, which represents a significant improvement in MCFOH production in minimal medium by S. cerevisiae.


Subject(s)
Fatty Alcohols/metabolism , Oxidoreductases/metabolism , Antiporters/metabolism , Biofuels , Fatty Acids/metabolism , Metabolic Engineering/methods , Organic Cation Transport Proteins/genetics , Oxidoreductases/physiology , Protein Engineering/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 117(35): 21804-21812, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817546

ABSTRACT

Several recent studies have shown that the concept of proteome constraint, i.e., the need for the cell to balance allocation of its proteome between different cellular processes, is essential for ensuring proper cell function. However, there have been no attempts to elucidate how cells' maximum capacity to grow depends on protein availability for different cellular processes. To experimentally address this, we cultivated Saccharomyces cerevisiae in bioreactors with or without amino acid supplementation and performed quantitative proteomics to analyze global changes in proteome allocation, during both anaerobic and aerobic growth on glucose. Analysis of the proteomic data implies that proteome mass is mainly reallocated from amino acid biosynthetic processes into translation, which enables an increased growth rate during supplementation. Similar findings were obtained from both aerobic and anaerobic cultivations. Our findings show that cells can increase their growth rate through increasing its proteome allocation toward the protein translational machinery.


Subject(s)
Gene Expression Regulation, Fungal/genetics , Protein Biosynthesis/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Amino Acids/biosynthesis , Amino Acids/metabolism , Biochemical Phenomena , Biological Phenomena , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal/physiology , Glucose/metabolism , Proteome/metabolism , Proteomics , Ribosomes/metabolism , Ribosomes/physiology , Saccharomyces cerevisiae Proteins/metabolism
12.
Mol Syst Biol ; 16(4): e9495, 2020 04.
Article in English | MEDLINE | ID: mdl-32337855

ABSTRACT

The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.


Subject(s)
Acetylcysteine/administration & dosage , Carnitine/administration & dosage , Metabolomics/methods , Niacinamide/analogs & derivatives , Serine/administration & dosage , Acetylcysteine/blood , Adult , Animals , Carnitine/blood , Dietary Supplements , Drug Therapy, Combination , Healthy Volunteers , Humans , Male , Models, Animal , Niacinamide/administration & dosage , Niacinamide/blood , Non-alcoholic Fatty Liver Disease/diet therapy , Precision Medicine , Pyridinium Compounds , Rats , Serine/blood
13.
Article in English | MEDLINE | ID: mdl-31890138

ABSTRACT

Cordyceps militaris is an entomopathogenic fungus which is often used in Asia as a traditional medicine developed from age-old wisdom. Presently, cordycepin from C. militaris is a great interest in medicinal applications. However, cellular growth of C. militaris and the association with cordycepin production remain poorly understood. To explore the metabolism of C. militaris as potential cell factories in medical and biotechnology applications, this study developed a high-quality genome-scale metabolic model of C. militaris, iNR1329, based on its genomic content and physiological data. The model included a total of 1329 genes, 1821 biochemical reactions, and 1171 metabolites among 4 different cellular compartments. Its in silico growth simulation results agreed well with experimental data on different carbon sources. iNR1329 was further used for optimizing the growth and cordycepin overproduction using a novel approach, POPCORN, for rational design of synthetic media. In addition to the high-quality GEM iNR1329, the presented POPCORN approach was successfully used to rationally design an optimal synthetic medium with C:N ratio of 8:1 for enhancing 3.5-fold increase in cordycepin production. This study thus provides a novel insight into C. militaris physiology and highlights a potential GEM-driven method for synthetic media design and metabolic engineering application. The iNR1329 and the POPCORN approach are available at the GitHub repository: https://github.com/sysbiomics/Cordyceps_militaris-GEM.

14.
JACC Clin Electrophysiol ; 5(10): 1130-1140, 2019 10.
Article in English | MEDLINE | ID: mdl-31648737

ABSTRACT

OBJECTIVES: This study sought to evaluate the value of combined electrogram (EGM) information provided by simultaneous mapping using micro- and conventional electrodes in the identification of post-myocardial infarction ventricular tachycardia substrate. BACKGROUND: Ventricular tachycardias after myocardial infarction are related to scars with complex geometry. Scar delineation and ventricular tachycardia substrate identification relies on bipolar voltages (BV) and EGM characteristics. Early reperfusion therapy results in small, nontransmural scars, the details of which may not be delineated using 3.5 mm tip catheters. METHODS: Nine swine with early reperfusion myocardial infarction were mapped using Biosense Webster's QDOT Micro catheter, incorporating 3 microelectrodes at the tip of the standard 3.5 mm electrode. Analysis of EGM during sinus rhythm, right ventricular pacing, and short-coupled right ventricular extrastimuli was performed. The swine were sacrificed and mapping data were projected onto the heart. Transmural biopsies (n = 196) corresponding to mapping points were obtained, allowing a head-to-head comparison of EGM recorded by micro- and conventional electrodes with histology. RESULTS: To identify scar areas using standard electrodes, unique cutoff values of unipolar voltage <5.44 mV, BV <1.27 mV (conventional), and BV <2.84 mV (microelectrode) were identified. Combining the information provided by unipolar voltage and BV mapping, the sensitivity of scar identification was increased to 93%. Micro-EGM were better able to distinguish small near-fields corresponding to a layer of viable subendocardium than conventional EGM were. CONCLUSIONS: The combined information provided by multisize electrode mapping increases the sensitivity with which areas of scar are identified. EGM from microelectrodes, with narrower spacing, allow identification of near-fields arising from thin subendocardial layer and layers activated with short delay obscured in EGM from conventional mapping catheter.


Subject(s)
Cardiomyopathies/physiopathology , Cicatrix/physiopathology , Electrophysiologic Techniques, Cardiac/methods , Myocardial Ischemia/physiopathology , Tachycardia, Ventricular/physiopathology , Animals , Cardiomyopathies/complications , Cardiomyopathies/pathology , Cicatrix/etiology , Cicatrix/pathology , Electrodes , Endocardium/physiopathology , Myocardial Ischemia/complications , Myocardial Ischemia/pathology , Swine , Tachycardia, Ventricular/etiology
15.
World J Gastroenterol ; 25(33): 4904-4920, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31543682

ABSTRACT

BACKGROUND: The trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet has been extensively validated in C57BL/6J mice with or without the Lepob/Lepob (ob/ob) mutation in the leptin gene for reliably inducing metabolic and liver histopathological changes recapitulating hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there is a marked need for developing a new diet capable of promoting a compatible level of disease in ob/ob and C57BL/6J mice. AIM: To develop a biopsy-confirmed mouse model of NASH based on an obesogenic diet with trans-fat substituted by saturated fat. METHODS: Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat (Primex shortening) substituted by equivalent amounts of palm oil [Gubra amylin NASH, (GAN) diet] for 8, 12 and 16 wk. C57BL/6J mice were fed the same diets for 28 wk. AMLN and GAN diets had similar caloric content (40% fat kcal), fructose (22%) and cholesterol (2%) level. RESULTS: The GAN diet was more obesogenic compared to the AMLN diet and impaired glucose tolerance. Biopsy-confirmed steatosis, lobular inflammation, hepatocyte ballooning, fibrotic liver lesions and hepatic transcriptome changes were similar in ob/ob mice fed the GAN or AMLN diet. C57BL/6J mice developed a mild to moderate fibrotic NASH phenotype when fed the same diets. CONCLUSION: Substitution of Primex with palm oil promotes a similar phenotype of biopsy-confirmed NASH in ob/ob and C57BL/6J mice, making GAN diet-induced obese mouse models suitable for characterizing novel NASH treatments.


Subject(s)
Disease Models, Animal , Liver/pathology , Non-alcoholic Fatty Liver Disease/etiology , Palm Oil/adverse effects , Animals , Biopsy , Diet, High-Fat/adverse effects , Humans , Leptin/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/pathology , Trans Fatty Acids/adverse effects
16.
Europace ; 21(12): 1919-1927, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31545375

ABSTRACT

AIMS: Contact force (CF) between radiofrequency (RF) ablation catheter and myocardium and ablation index (AI) correlates with RF lesion depth and width in normal-voltage (>1.5 mV) myocardium (NVM). We investigate the impact of CF on RF lesion depth and width in low (<0.5 mV) (LVM) and intermediate-voltage (0.5-1.5 mV) myocardium (IVM) following myocardial infarction. Correlation between RF lesion depth and width evaluated by native contrast magnetic resonance imaging (ncMRI) and gross anatomical evaluation was investigated. METHODS AND RESULTS: Twelve weeks after myocardial infarction, 10 pigs underwent electroanatomical mapping and endocardial RF ablations were deployed in NVM, IVM, and LVM myocardium. In vivo ncMRI was performed before the heart was excised and subjected to gross anatomical evaluation. Ninety (82%) RF lesions were evaluated. Radiofrequency lesion depth and width were smaller in IVM and LVM compared with NVM (P < 0.001). Radiofrequency lesion depth and width correlated with CF, AI, and impedance drop in NVM (CF and AI P < 0.001) and IVM (CF and AI depths P < 0.001; CF and AI widths P < 0.05). Native contrast magnetic resonance imaging evaluated RF lesion depth and width correlated with gross anatomical depth and width (NVM and IVM P < 0.001; LVM P < 0.05). CONCLUSIONS: Radiofrequency lesions deployed by similar duration, power and CF are smaller in IVM and LVM than in NVM. Radiofrequency lesion depth and width correlated with CF, AI, and impedance drop in NVM and IVM but not in LVM. Native contrast magnetic resonance imaging may be useful to assess RF lesion depth and width in NVM, IVM, and LVM.


Subject(s)
Catheter Ablation/methods , Cicatrix/physiopathology , Heart/diagnostic imaging , Myocardial Infarction/physiopathology , Myocardium/pathology , Tachycardia, Ventricular/surgery , Animals , Cardiac Surgical Procedures , Cicatrix/diagnostic imaging , Cicatrix/pathology , Electric Impedance , Electrophysiologic Techniques, Cardiac , Magnetic Resonance Imaging , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Recurrence , Sus scrofa , Swine , Tachycardia, Ventricular/physiopathology , Treatment Failure
17.
Europace ; 21(9): 1369-1377, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31274152

ABSTRACT

AIMS: To test in a double-blinded, randomized trial whether the combination of electrically guided left ventricular (LV) lead placement and post-implant interventricular pacing delay (VVd) optimization results in superior increase in LV ejection fraction (LVEF) in cardiac resynchronization therapy (CRT) recipients. METHODS AND RESULTS: Stratified according to presence of ischaemic heart disease, 122 patients were randomized 1:1 to LV lead placement targeted towards the latest electrically activated segment identified by systematic mapping of the coronary sinus tributaries during CRT implantation combined with post-implant VVd optimization (intervention group) or imaging-guided LV lead implantation by cardiac computed tomography venography, 82Rubidium myocardial perfusion imaging and speckle tracking echocardiography targeting the LV lead towards the latest mechanically activated non-scarred myocardial segment (control group). Follow-up was 6 months. Primary endpoint was absolute increase in LVEF. Additional outcome measures were changes in New York Heart Association class, 6-minute walk test, and quality of life, LV reverse remodelling, and device related complications. Analysis was intention-to-treat. A larger increase in LVEF was observed in the intervention group (11 ± 10 vs. 7 ± 11%; 95% confidence interval 0.4-7.9%, P = 0.03); when adjusting for pre-specified baseline covariates this difference did not maintain statistical significance (P = 0.09). Clinical response, LV reverse remodelling, and complication rates did not differ between treatment groups. CONCLUSION: Electrically guided CRT implantation appeared non-inferior to an imaging-guided strategy considering the outcomes of change in LVEF, LV reverse remodelling and clinical response. Larger long-term studies are warranted to investigate the effect of an electrically guided CRT strategy.


Subject(s)
Cardiac Resynchronization Therapy Devices , Cardiac Resynchronization Therapy/methods , Electrophysiologic Techniques, Cardiac/methods , Heart Failure/therapy , Prosthesis Implantation/methods , Surgery, Computer-Assisted/methods , Ventricular Dysfunction, Left/therapy , Aged , Aged, 80 and over , Coronary Sinus/diagnostic imaging , Coronary Sinus/physiopathology , Double-Blind Method , Echocardiography , Female , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Humans , Intention to Treat Analysis , Male , Middle Aged , Myocardial Perfusion Imaging , Positron-Emission Tomography , Quality of Life , Rubidium Radioisotopes , Stroke Volume , Tomography, X-Ray Computed , Treatment Outcome , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Ventricular Remodeling/physiology , Walk Test
18.
Microb Cell Fact ; 18(1): 49, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30857535

ABSTRACT

BACKGROUND: Fatty acids (FAs) with a chain length of more than 18 carbon atoms (> C18) are interesting for the production of specialty compounds derived from these FAs. These compounds include free FAs, like erucic acid (C22:1-Δ13), primary fatty alcohols (FOHs), like docosanol (C22:0-FOH), as well as jojoba-like wax esters (WEs) (C38-WE to C44-WE), which are esters of (very) long-chain FAs and (very) long-chain FOHs. In particular, FAs, FOHs and WEs are used in the production of chemicals, pharmaceuticals and cosmetic products. Jojoba seed oil is highly enriched in diunsaturated WEs with over 70 mol% being composed of C18:1-C24:1 monounsaturated FOH and monounsaturated FA moieties. In this study, we aim for the production of jojoba-like WEs in the yeast Saccharomyces cerevisiae by increasing the amount of very long-chain, monounsaturated FAs and simultaneously expressing enzymes required for WE synthesis. RESULTS: We show that the combined expression of a plant-derived fatty acid elongase (FAE/KCS) from Crambe abyssinica (CaKCS) together with the yeast intrinsic fatty acid desaturase (FAD) Ole1p leads to an increase in C20:1 and C22:1 FAs in S. cerevisiae. We also demonstrate that the best enzyme candidate for C24:1 FA production in S. cerevisiae is a FAE derived from Lunaria annua (LaKCS). The combined overexpression of CaKCS and Ole1p together with a fatty acyl reductase (FAR/FAldhR) from Marinobacter aquaeolei VT8 (MaFAldhR) and a wax synthase (WS) from Simmondsia chinensis (SciWS) in a S. cerevisiae strain, overexpressing a range of other enzymes involved in FA synthesis and elongation, leads to a yeast strain capable of producing high amounts of monounsaturated FOHs (up to C22:1-FOH) as well as diunsaturated WEs (up to C46:2-WE). CONCLUSIONS: Changing the FA profile of the yeast S. cerevisiae towards very long-chain monounsaturated FAs is possible by combined overexpression of endogenous and heterologous enzymes derived from various sources (e.g. a marine copepod or plants). This strategy was used to produce jojoba-like WEs in S. cerevisiae and can potentially be extended towards other commercially interesting products derived from very long-chain FAs.


Subject(s)
Fatty Acids, Monounsaturated/metabolism , Plant Oils/metabolism , Saccharomyces cerevisiae/metabolism , Waxes/metabolism , Fatty Acids/metabolism , Saccharomyces cerevisiae/genetics
20.
Europace ; 20(10): 1630-1637, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29377984

ABSTRACT

Aims: In a randomized trial of cardiac resynchronization therapy (CRT), a presumed optimal left ventricular (LV) lead position close to the latest mechanically activated non-scarred myocardium was achieved in 98% of patients by standard implantation. We evaluated whether inter-lead electrical delay (IED) was associated with response to CRT in these patients. Methods and results: We prospectively included 160 consecutive patients undergoing CRT. Pre-implant speckle-tracking echocardiography radial strain and 99mTc myocardial perfusion imaging determined the latest mechanically activated non-scarred myocardial segment. We measured procedural IED as the time interval between sensed signals in right ventricular and LV lead electrograms. All patients had LV pacing site concordant or adjacent to the latest mechanically activated non-scarred segment verified by cardiac computed tomography. Response to CRT was defined as ≥15% reduction in LV end-systolic volume at 6 months follow-up. Selecting a practical IED cut-off value of 100 ms, more patients with long IED than patients with short IED responded to CRT (87 vs. 68%; P = 0.004). In multivariate logistic regression analysis, IED ≥100 ms remained associated with CRT response after adjusting for baseline characteristics, including QRS duration and scar burden [odds ratio 3.19 (1.24-8.17); P = 0.01]. Categorizing IED by tertiles, CRT response improved with longer IED (P = 0.03). Comparable response rates were observed in patients with a concordant and adjacent LV lead position. Conclusion: A longer IED was associated with more pronounced LV reverse remodelling response in CRT recipients with a presumed optimal LV lead position concordant or adjacent to the latest mechanically activated non-scarred segment.


Subject(s)
Cardiac Resynchronization Therapy Devices , Cardiac Resynchronization Therapy/methods , Heart Failure/therapy , Stroke Volume , Ventricular Remodeling , Aged , Aged, 80 and over , Echocardiography , Electrophysiologic Techniques, Cardiac , Female , Heart Failure/diagnostic imaging , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Myocardial Perfusion Imaging , Odds Ratio , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL