Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Genet ; 16(2): e1008628, 2020 02.
Article in English | MEDLINE | ID: mdl-32101538

ABSTRACT

Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.


Subject(s)
Cataract/genetics , Epidermis/pathology , Hypotrichosis/genetics , Intramolecular Transferases/genetics , Lens, Crystalline/pathology , Adolescent , Animals , Cataract/congenital , Cataract/pathology , Cholesterol/metabolism , DNA Mutational Analysis , Disease Models, Animal , Epidermis/enzymology , Holistic Health , Humans , Hypotrichosis/congenital , Hypotrichosis/pathology , Intramolecular Transferases/metabolism , Lanosterol/analysis , Lanosterol/metabolism , Lens, Crystalline/enzymology , Male , Mice , Mice, Knockout , Mutation , Pedigree , Sebum/chemistry , Exome Sequencing
2.
Hum Mol Genet ; 21(7): 1496-503, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22171071

ABSTRACT

Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(-/-) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.


Subject(s)
Aminomethyltransferase/genetics , Glycine Decarboxylase Complex H-Protein/genetics , Glycine Dehydrogenase (Decarboxylating)/genetics , Mutation , Neural Tube Defects/genetics , Animals , Glycine Decarboxylase Complex/metabolism , Humans , Mice , Mice, Knockout , Mutation, Missense
SELECTION OF CITATIONS
SEARCH DETAIL