Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5525, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130948

ABSTRACT

Leaf functional traits are important indicators of plant growth and ecosystem dynamics. Despite a wealth of knowledge about leaf trait relationships, a mechanistic understanding of how biotic and abiotic factors quantitatively influence leaf trait variation and scaling is still incomplete. We propose that leaf water content (LWC) inherently affects other leaf traits, although its role has been largely neglected. Here, we present a modification of a previously validated model based on metabolic theory and use an extensive global leaf trait dataset to test it. Analyses show that mass-based photosynthetic capacity and specific leaf area increase nonlinearly with LWC, as predicted by the model. When the effects of temperature and LWC are controlled, the numerical values for the leaf area-mass scaling exponents converge onto 1.0 across plant functional groups, ecosystem types, and latitudinal zones. The data also indicate that leaf water mass is a better predictor of whole-leaf photosynthesis and leaf area than whole-leaf nitrogen and phosphorus masses. Our findings highlight a comprehensive theory that can quantitatively predict some global patterns from the leaf economics spectrum.


Subject(s)
Ecosystem , Water , Nitrogen/metabolism , Phosphorus/metabolism , Photosynthesis , Plant Leaves/metabolism
2.
Sci Rep ; 12(1): 14294, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995937

ABSTRACT

Biocontrol providing parasitoids can orientate according to volatile organic compounds (VOCs) of their host's plants, the emission of which is potentially dependent on the availability of soil nitrogen (N). This paper aimed at finding the optimal N fertilization rate for oilseed rape (Brassica napus L.) to favor parasitism of pollen beetles (Brassicogethes aeneus Fab. syn. Meligethes aeneus Fab.) in a controlled environment. Pollen beetles preferred to oviposit into buds of plants growing under higher N fertilization, whereas their parasitoids favored moderate N fertilization. As a part of induced defense, the proportion of volatile products of glucosinolate pathway in the total oilseed rape VOC emission blend was increased. Our results suggest that the natural biological control of pollen beetle herbivory is best supported by moderate N fertilization rates.


Subject(s)
Brassica napus , Coleoptera , Animals , Coleoptera/metabolism , Fertilization , Nitrogen/metabolism , Pollen
3.
New Phytol ; 220(3): 773-784, 2018 11.
Article in English | MEDLINE | ID: mdl-29120052

ABSTRACT

The emission of isoprenoids (e.g. isoprene and monoterpenes) by plants plays an important defensive role against biotic and abiotic stresses. Little is known, however, about the functional traits linked to species-specific variability in the types and rates of isoprenoids emitted and about possible co-evolution of functional traits with isoprenoid emission type (isoprene emitter, monoterpene emitter or both). We combined data for isoprene and monoterpene emission rates per unit dry mass with key functional traits (foliar nitrogen (N) and phosphorus (P) concentrations, and leaf mass per area) and climate for 113 plant species, covering the boreal, wet temperate, Mediterranean and tropical biomes. Foliar N was positively correlated with isoprene emission, and foliar P was negatively correlated with both isoprene and monoterpene emission rate. Nonemitting plants generally had the highest nutrient concentrations, and those storing monoterpenes had the lowest concentrations. Our phylogenetic analyses found that the type of isoprenoid emission followed an adaptive, rather than a random model of evolution. Evolution of isoprenoids may be linked to nutrient availability. Foliar N and P are good predictors of the type of isoprenoid emission and the rate at which monoterpenes, and to a lesser extent isoprene, are emitted.


Subject(s)
Butadienes/analysis , Hemiterpenes/analysis , Nitrogen/metabolism , Phosphorus/metabolism , Plants/metabolism , Volatile Organic Compounds/analysis , Climate , Models, Theoretical , Phylogeny , Principal Component Analysis
4.
Front Plant Sci ; 6: 111, 2015.
Article in English | MEDLINE | ID: mdl-25784918

ABSTRACT

Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5) residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS) that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS). The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3), functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP), while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP) and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP). Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.

5.
Plant Cell Environ ; 38(7): 1285-98, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25366665

ABSTRACT

Several important dioecious species show sexual spatial segregation (SSS) along environmental gradients that have significant ecological effect on terrestrial ecosystem. However, little attention has been paid to understanding of how males and females respond to environmental gradients and sexual competition. We compared eco-physiological parameters of males and females of Populus cathayana under different sexual competition patterns and nitrogen (N) supply levels. We found that males and females interacting with the same or opposite sex showed significant differences in biomass partition, photosynthetic capacity, carbon (C) and N metabolism, and leaf ultrastructure, and that the sexual differences to competition were importantly driven by N supply. The intersexual competition was enhanced under high N, while the intrasexual competition among females was amplified under low N. Under high N, the intersexual competition stimulated the growth of the females and negatively affected the males. In contrast, under low N, the males exposed to intrasexual competition had the highest tolerance, whereas females exposed to intrasexual competition showed the lowest adaptation among all competition patterns. Sexual competition patterns and N supply levels significantly affected the sexual dimorphism and competitiveness, which may play an important role in spatial segregation of P. cathayana populations.


Subject(s)
Carbon/metabolism , Nitrogen/pharmacology , Populus/physiology , Adaptation, Physiological , Amino Acids/analysis , Biomass , Carbohydrate Metabolism , Chlorophyll/analysis , Nitrogen/metabolism , Phosphorus/analysis , Photosynthesis/physiology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/physiology , Plant Transpiration/physiology , Polyphenols/analysis , Populus/drug effects , Populus/growth & development
6.
J Plant Physiol ; 171(15): 1436-43, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25050479

ABSTRACT

Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants.


Subject(s)
Anethum graveolens/radiation effects , Apium/radiation effects , Oils, Volatile/metabolism , Petroselinum/radiation effects , Terpenes/metabolism , Volatile Organic Compounds/metabolism , Anethum graveolens/chemistry , Anethum graveolens/ultrastructure , Apium/chemistry , Apium/ultrastructure , Chloroplasts/metabolism , Electromagnetic Radiation , Microscopy, Electron, Transmission , Microwaves , Petroselinum/chemistry , Petroselinum/ultrastructure , Photosynthesis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Leaves/radiation effects , Plant Leaves/ultrastructure , Species Specificity , Stress, Physiological , Wireless Technology
7.
Tree Physiol ; 25(8): 1001-14, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15929931

ABSTRACT

Extensive variation in fractional resorption of mineral elements from plant leaves is still not fully understood. In multi-species forest stands, species leaf fall phenology and leaf constitution may significantly modify the timing of nutrient return to the soil and overall plant nutrient loss. We studied leaf fall and nutrient loss kinetics, and leaf composition in three natural, temperate, deciduous broadleaf forest stands to determine the role of timing of leaf abscission and nutrient immobilization in cell walls on nutrient resorption efficiency of senescing leaves. Nitrogen (N), phosphorus and potassium contents decreased continuously in attached leaves after peak physiological activity during mid-season. Changes in nutrient contents of attached leaves were paralleled by decreases in nutrient contents in freshly fallen leaf litter. In different species and for different nutrients, resorption of nutrients from senescing leaves proceeded with different kinetics. The maximum nutrient resorption efficiency (the fraction of specific nutrient resorbed from the leaves at the end of leaf fall) did not depend on the mid-seasonal nutrient concentration. Species with earlier leaf fall resorbed leaf nutrients at a faster rate, partly compensating for the earlier leaf fall. Nevertheless, the litter-mass weighted mean nutrient contents in leaf litter were still larger in species with earlier leaf fall, demonstrating an inherent trade-off between early leaf fall and efficient nutrient resorption. This trade-off was most important for N. Losses of the non-mobile nutrients calcium and magnesium were unaffected by the timing of leaf fall. There was large variation in the maximum N resorption efficiency among species. Correlations among leaf chemical variables suggested that the maximum N resorption efficiency decreased with the increasing fraction of cell walls in the leaves, possibly due to a greater fraction of N occluded in cell wall matrix. We conclude that species leaf fall phenology and leaf chemistry modify the timing and quantities of plant nutrient losses, and that more diverse forest stands supporting a spectrum of species with different phenologies and leaf types produce litter with more variable chemical characteristics than monotypic stands.


Subject(s)
Climate , Ecosystem , Plant Leaves/chemistry , Plant Leaves/metabolism , Trees/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Plant Leaves/classification , Potassium/metabolism , Seasons , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL