Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Ecotoxicol Environ Saf ; 265: 115501, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37774545

ABSTRACT

The contamination of uranium in aquatic ecosystems has raised growing global concern. However, the understanding of its chronic effects on aquatic organisms is limited, particularly with regards to transgenerational toxicity. In this study, we evaluated the maternal transfer risk of uranium using zebrafish. Sexually mature female zebrafish were exposed to 2 and 20 ng/g of uranium-spiked food for 28 days. The induced bioconcentration, thyroid disruption, and oxidative stress in both the adults (F0) and their embryos (F1) were further investigated. Element analysis showed that uranium was present in both F0 and F1, with higher concentrations observed in F1, indicating significant maternal offloading to the offspring. Meanwhile, an increased malformation and decreased swim speed were observed in the F1. Thyroid hormone analysis revealed significant decreases in the levels of triiodothyronine (T3) in both the F0 adults and F1 embryos, but thyroxine (T4) was not significantly affected. Additionally, the activities of antioxidant defenses, including catalase (CAT) and superoxide dismutase (SOD), and the expression of glutathione (GSH) and malondialdehyde (MDA) were significantly altered in the F0 and F1 larvae at 120 hpf. The hypothalamic-pituitary-thyroid (HPT) axis, oxidative stress, and apoptosis-related gene transcription expression were also significantly affected in both generations. Taken together, these findings highlight the importance of considering maternal transfer in uranium risk assessments.


Subject(s)
Endocrine Disruptors , Uranium , Water Pollutants, Chemical , Animals , Humans , Female , Thyroid Gland , Zebrafish/metabolism , Uranium/toxicity , Uranium/metabolism , Maternal Exposure/adverse effects , Ecosystem , Water Pollutants, Chemical/metabolism , Endocrine Disruptors/toxicity , Oxidative Stress , Larva
2.
Nutrients ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458112

ABSTRACT

Genistein is an isoflavone phytoestrogen that has been shown to improve obesity; however, the underlying molecular mechanisms involved therein have not been clearly elucidated. In this study, we administered genistein to high-fat diet-induced obese mice to investigate its effect on hepatic gluconeogenesis. The results showed that genistein treatment significantly inhibited body weight gain, hyperglycemia, and adipose and hepatic lipid deposition in high-fat diet-induced obese mice. Glucose tolerance test (GTT), insulin tolerance test (ITT) and pyruvate tolerance test (PTT) showed that genistein treatment significantly inhibited gluconeogenesis and improved insulin resistance in obese mice. In addition, this study also found that genistein could promote the expression of miR-451 in vitro and in vivo, and the dual-luciferase reporter system showed that G6pc (glucose-6-phosphatase) may be a target gene of miR-451. Both genistein treatment and in vivo injection of miR-451 agomir significantly inhibited gluconeogenesis and inhibited the expression of G6pc and Gk (glycerol kinase, a known target gene of miR-451). In conclusion, genistein may inhibit gluconeogenesis in obese mice by regulating the expression of Gk and G6pc through miR-451. These results may provide insights into the functions of miR-451 and food-derived phytoestrogens in ameliorating and preventing gluconeogenesis-related diseases.


Subject(s)
Insulin Resistance , MicroRNAs , Animals , Diet, High-Fat/adverse effects , Genistein/adverse effects , Gluconeogenesis , Insulin Resistance/genetics , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/chemically induced , Obesity/etiology , Phytoestrogens/adverse effects
3.
J Biol Chem ; 297(6): 101388, 2021 12.
Article in English | MEDLINE | ID: mdl-34762911

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.


Subject(s)
Hepatocytes/metabolism , Mitochondria, Liver/metabolism , NAD/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cytokines/deficiency , Cytokines/metabolism , Mice , Mice, Knockout , Mitochondria, Liver/genetics , NAD/genetics , Nicotinamide Phosphoribosyltransferase/deficiency , Nicotinamide Phosphoribosyltransferase/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Phosphorylation , Phenotype
4.
Gut Microbes ; 13(1): 1-19, 2021.
Article in English | MEDLINE | ID: mdl-33550882

ABSTRACT

Betaine is a natural compound present in commonly consumed foods and may have a potential role in the regulation of glucose and lipids metabolism. However, the underlying molecular mechanism of its action remains largely unknown. Here, we show that supplementation with betaine contributes to improved high-fat diet (HFD)-induced gut microbiota dysbiosis and increases anti-obesity strains such as Akkermansia muciniphila, Lactobacillus, and Bifidobacterium. In mice lacking gut microbiota, the functional role of betaine in preventing HFD-induced obesity, metabolic syndrome, and inactivation of brown adipose tissues are significantly reduced. Akkermansia muciniphila is an important regulator of betaine in improving microbiome ecology and increasing strains that produce short-chain fatty acids (SCFAs). Increasing two main members of SCFAs including acetate and butyrate can significantly regulate the levels of DNA methylation at host miR-378a promoter, thus preventing the development of obesity and glucose intolerance. However, these beneficial effects are partially abolished by Yin yang (YY1), a common target gene of the miR-378a family. Taken together, our findings demonstrate that betaine can improve obesity and associated MS via the gut microbiota-derived miR-378a/YY1 regulatory axis, and reveal a novel mechanism by which gut microbiota improve host health.


Subject(s)
Anti-Obesity Agents/pharmacology , Betaine/pharmacology , Gastrointestinal Microbiome/drug effects , MicroRNAs/genetics , Obesity/prevention & control , Animals , Anti-Obesity Agents/administration & dosage , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism , Betaine/administration & dosage , Diet, High-Fat/adverse effects , Dietary Supplements , Fatty Acids, Volatile/metabolism , Female , Metabolic Syndrome/etiology , Metabolic Syndrome/genetics , Metabolic Syndrome/microbiology , Metabolic Syndrome/prevention & control , Mice , Obesity/etiology , Obesity/genetics , Obesity/microbiology , YY1 Transcription Factor/genetics
5.
Ecotoxicol Environ Saf ; 208: 111585, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396108

ABSTRACT

Uranium is a radioactive element that is widely present in aquatic environment. However, limited knowledge is available about the effect of uranium on thyroid system, which plays a key role in the development of animals. In this study, zebrafish embryos were exposed to different environmentally relevant concentrations of uranium (2, 20 and 100 µg/L) for 120 h. The bioaccumulation, developmental toxicities, changes of thyroid hormones (THs) and key genes related to the hypothalamic-pituitary-thyroid (HPT) axis in larvae were analyzed after exposure. Results showed that uranium could bioaccumulate in zebrafish larvae, with the bioconcentration factors ranging from 49.6 to 523. Consequently, significant developmental toxicities and changes in locomotor activities were observed with a concentration-dependent manner. The levels of triiodothyronine (T3) levels in larvae were substantially decreased, whereas those of thyroxine (T4) were increased in fish bodies. The levels of THs were regulated by the negative feedback loops through HPT axis related genes, most of which (NIS, Deio1, Deio2, TRα, TSHß and UGT1ab) were significantly depressed after exposure to uranium. Our results suggest the potential toxicities and thyroid disruption of uranium on zebrafish, which would provide baseline data set for better understanding the impact of waterborne uranium on aquatic organisms and the associated mechanisms. This study also highlights the key role of thyroid disruption in the ecological risk assessment of uranium pollution.


Subject(s)
Thyroid Gland/drug effects , Thyroid Hormones/metabolism , Uranium/toxicity , Water Pollutants, Radioactive/toxicity , Zebrafish/physiology , Animals , Larva , Thyroxine , Triiodothyronine , Zebrafish/growth & development , Zebrafish Proteins/genetics
6.
Article in English | MEDLINE | ID: mdl-31985418

ABSTRACT

The hypothalamus plays an important role in the control of aging. Transcranial ultrasound stimulation (TUS) has been reported as a noninvasive method of neuromodulation. However, the effect of TUS of the hypothalamus on aging remains unclear. Therefore, the aim of this study is to verify whether TUS of the hypothalamus could affect the behaviors of aging mice and the expression level of apoptosis factors and inflammatory cytokines. TUS was delivered to the hypothalamus of mice ( n = 44 ) for 14 days (15 min/day) at a fundamental frequency of 1 MHz, pulse repetition frequency of 1 kHz (US1) or 10 Hz (US2), duty cycle of 10%, and acoustic pressure of 0.13 MPa. The effect of TUS on aging was evaluated by the behavioral tests or Western blotting in different stages. The behavioral results showed that mice in the US2 group improved their movement and learning. In addition, there was a significant improvement in the grip strength after TUS in the second behavioral tests (Sham: 0.0351 ± 0.0020 N/g; US1: 0.0340 ± 0.0023 N/g; US2: 0.0425 ± 0.0029 N/g, p = 0.034 ). Furthermore, the level of inflammation (TNF- α : Sham: 0.69 ± 0.084; US1: 0.39 ± 0.054; US2: 0.49 ± 0.1, p = 0.021 ) and apoptosis (Bax: Sham: 0.47 ± 0.049; US1: 0.42 ± 0.054; US2: 0.18 ± 0.055, p = 0.001 ) was significantly reduced after TUS in this stage. We did not see a long-lasting effect of TUS in the third behavioral tests. In addition, we found that TUS is safe according to hematoxylin and eosin (HE) staining. In conclusion, TUS could effectively modulate the hypothalamus, which may provide a new method for controlling aging.


Subject(s)
Aging , Movement , Animals , Hypothalamus , Mice , Ultrasonography
7.
Article in English | MEDLINE | ID: mdl-35003307

ABSTRACT

Focused ultrasound (FUS) is a potential tool for treating chronic pain by modulating the central nervous system. Herein, we aimed to determine whether transcranial FUS stimulation of the anterior cingulate cortex (ACC) effectively improved chronic pain in the chronic compress injury mice model at different stages of neuropathic pain. The mechanical threshold of pain was recorded in the nociceptive tests. We found FUS stimulation elevated the mechanical threshold of pain in both short-term (p < 0.01) and long-term (p < 0.05) experiments. Furthermore, we determined protein expression differences in ACC between the control group, the intervention group, and the Sham group to analyze the underlying mechanism of FUS stimulation in improving neuropathic pain. Additionally, the results showed FUS stimulation led to alterations in differential proteins in long-term experiments, including cellular processes, cellular signaling, and information storage and processing. Our findings indicate FUS may effectively alleviate mechanical neuropathic pain via the ACC's stimulation, especially in the chronic state.

8.
J Exp Bot ; 71(14): 4042-4056, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32249299

ABSTRACT

The flowers of okra (Abelmoschus esculentus) open and wilt within only a few hours, and this is accompanied by accumulation of hyperoside, a secondary metabolite in the flavonoid pathway. However, little is known about the relationship between flavonoids and flowering. Here, we found that exogenous application of hyperoside extended the duration of the full-blooming period by more than 3-fold, and this was accompanied by a 14.7-fold increase in the expression of CALCIUM-DEPENDENT PROTEIN KINASE6 (AeCDPK6). Gene expression profiling indicated that the transcription factor AeMYB30 was co-expressed with AeCDPK6, and detailed protein interaction and phosphorylation experiments together with yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated an interaction between AeMYB30 and AeCDPK6. AeCDPK6 specifically phosphorylated AeMYB30S191, leading to increased protein stability and prevention of degradation. Furthermore, AeMYB30 directly bound to the promoter of AeUF3GaT1, a key enzyme in the hyperoside biosynthesis pathway. Analysis of transgenic plants showed that AeCDPK6 was required for the hyperoside-induced phosphorylation of AeMYB30 to enhance its stability and transcriptional activity. Ectopic expression of AeCDPK6 promoted hyperoside accumulation and prolonged the full-blooming period in an AeMYB30-dependent manner. Our results indicate the role of AeCDPK6-AeMYB30 in the molecular mechanism by which hyperoside regulates the period of full blooming in okra, a plant with a short duration of flowering.


Subject(s)
Abelmoschus , Flavonoids , Plant Extracts , Quercetin/analogs & derivatives
9.
Article in English | MEDLINE | ID: mdl-32229491

ABSTRACT

Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A ß-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.


Subject(s)
Colistin , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation , Proteomics
10.
Lab Chip ; 19(20): 3387-3396, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31517364

ABSTRACT

The patterning of nanoparticles, which are promising photothermal agents, is of great importance to selectively and precisely ablate tissues by thermal effects. In this paper, we demonstrated that nano-sized gold particles (gold nanocages, AuNCS) with a hollow structure could be used to generate various wavefront patterns of surface acoustic waves (SAWs) and the aligned AuNC lines facilitated the destruction of cancer cells by the thermal effect with high spatial resolution. The hollow structure improved the acoustic sensitivity of AuNCs, making them more sensitive to the acoustic radiation force. Moreover, the multi-scale patterning of AuNCs could be achieved by the interference of multiple acoustic beams. Given the photothermal characteristics of AuNCs, selective temperature elevation within a micrometer-sized region could be realized when the patterned AuNCs were irradiated by a laser. The cancer cells where the patterned AuNCs were located were eliminated by thermal ablation, while other cells remained alive. In particular, the acoustic frequency used in this study was as low as 11. 35 MHz and was in the range of diagnostic ultrasound (less than 12 MHz), offering a potential to serve as a powerful tool in clinical applications.


Subject(s)
Gold/chemistry , Infrared Rays , Metal Nanoparticles/chemistry , Sound , Cell Line, Tumor , Cell Survival/radiation effects , Humans , Hyperthermia, Induced , Lab-On-A-Chip Devices , Neoplasms/pathology , Neoplasms/therapy , Phototherapy/methods , Surface Properties
11.
Int J Syst Evol Microbiol ; 68(9): 2878-2882, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30028280

ABSTRACT

A novel bacterial strain, designated T8T, isolated from ripened Pu'er tea, was investigated by using a polyphasic taxonomic approach. Cells stained Gram-positive and were aerobic, sporogenous and rod-shaped with flagella. Phylogenetic analysis of 16S rRNA gene sequences revealed the strain belonged to the family Bacillaceae in the class Bacilli and represented an independent taxon separated from other genera. Strain T8T shared low levels of 16S rRNA gene sequence similarity (<94 %) to members of other genera in the family Bacillaceae and was most closely related to Bacillus composti SgZ-9T (93.3 % sequence similarity). The DNA G+C content of strain T8T was 40 mol%. The major fatty acids (>10 %) of strain T8T were iso-C15 : 0 and iso-C16 : 0. The strain had a cell-wall type A1γ peptidoglycan with meso-diaminopimelic acid as the diagnostic diamino acid. MK-7 (62 %), MK-6 (31 %) and MK-8 (7 %) were detected as the isoprenoid quinones. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine and six unidentified phospholipids. On the basis of the polyphasic evidence presented, strain T8T is considered to represent a novel genus and species in the family Bacillaceae, for which we propose the name Pueribacillus theae gen. nov., sp. nov. The type strain is T8T (=CGMCC 1.15924T=KCTC 333888T).


Subject(s)
Bacillaceae/classification , Food Microbiology , Phylogeny , Tea/microbiology , Bacillaceae/genetics , Bacillaceae/isolation & purification , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , China , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/chemistry
12.
Int J Syst Evol Microbiol ; 68(2): 564-569, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29300151

ABSTRACT

A novel aerobic, Gram-stain-positive, sporogenous, rod-shaped bacterial strain, 7578-1T, was isolated from ripened Pu'er tea. Based on 16S rRNA gene sequence similarity comparisons, strain 7578-1T was grouped into the genus Bacillus and appeared to be closely related to the type strains Bacillus shackletoniiLMG 18435T (98.4 %), Bacillus acidicolaDSM 14745T (97.6 %), Bacillus paralicheniformis KACC 18426T (97.2 %) and Bacillus ginsengihumi KCTC 13944T (96.7 %). The fatty acid profile containing the major fatty acids, iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0 supported the allocation of strain 7578-1T to the genus Bacillus. The strain had a cell-wall type A1γ peptidoglycan with meso-diaminopimelic acid as the diagnostic diamino acid. The major menaquinone was MK-7 (95 %). The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, one unidentified phospholipid and one unidentified lipid. The average nucleotide identity values between strain 7578-1T and its most closely related species were 67.8-82.4 % by OrthoANIu analysis. The DNA-DNA relatedness value between strain 7578-1T and the type strains of closely related species were 17-39 %, again indicating that strain 7578-1T represented a novel species in the genus Bacillus. The DNA G+C content of strain 7578-1T was 36.0 mol%. On the basis of the presented polyphasic evidence, strain 7578-1T is considered to represent a novel species of the genus Bacillus, for which we propose the name Bacillus camelliae sp. nov. The type strain is 7578-1T (=CGMCC 1.15374T=KCTC 33845T).


Subject(s)
Bacillus/classification , Food Microbiology , Phylogeny , Tea/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , China , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
13.
Biol Trace Elem Res ; 182(1): 159-168, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28620728

ABSTRACT

Toxic heavy metal contamination in Chinese edible herbs has raised a worldwide concern. In this study, heavy metals in Epimedii Folium, an edible medicinal plant in China, were quantitatively analyzed. Variations of heavy metals in different species, in various organs (i.e., leaves, stems, and roots), in wild-growing and cultivated plants, and in 35 market samples of Epimedii Folium, were systematically investigated. In all of Epimedium samples, Hg (mercury) was not detectable (0.00 µg/g). Four species, Epimedium pubescens, Epimedium sagittatum, Epimedium brevicornu, and Epimedium wushanense, were found to contain Cu (copper) and Pb (lead). And contents of Cu and Pb in E. brevicornu were significantly higher than those in other species (P < 0.01). In wild-growing and cultivated Epimedium plants, Cd (cadmium) and As (arsenic) were not detectable, and concentrations of Cu and Pb in wild-growing plants were significantly higher than those in cultivated plants (P < 0.01). Cd was not detectable in leaves, roots, and stems, while organ specificity was apparent in the distribution of Cu, As, and Pb. And the highest levels of Cu and Pb were observed in roots and leaves, respectively. In Chinese markets, several samples of Epimedii Folium contained excessive Cu, Cd, As, and Pb beyond the national permissible limits. In summary, there was a large variation of heavy metals among Epimedii Folium samples, and Cu and Pb were the most important heavy metals contaminating the edible medicinal plant. Application of Epimedii Folium to drug and food industries will need to focus more on toxic heavy metal contamination.


Subject(s)
Epimedium/chemistry , Metals, Heavy/analysis , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Arsenic/analysis , Cadmium/analysis , China , Copper/analysis , Epimedium/classification , Lead/analysis , Metals, Heavy/metabolism , Plant Roots/chemistry , Plant Stems/chemistry , Species Specificity
14.
Biomed Res Int ; 2017: 6280972, 2017.
Article in English | MEDLINE | ID: mdl-29098158

ABSTRACT

The root of Angelica sinensis (RAS) is a traditional Chinese medicine used for preventing and treating various diseases. In this study, we assessed RAS supplementation effects on body weight and the FTO gene expression and methylation status in a high-fat-diet (HFD) induced obese mouse model. Female obese mice were divided into groups according to RAS dosage in diet as follows: normal diet, HFD diet (HC), HFD with low-dosage RAS (DL), HFD with medium-dosage RAS (DM), and HFD with high-dosage RAS (DH). After RAS supplementation for 4 weeks, body weight suppression and FTO expression in DH mice were significantly higher than in HC mice, whereas no significant change in FTO expression was detected between DM and DL mice or in their offspring. Bisulfite sequencing PCR (BSP) revealed that the CpG island in the FTO promoter was hypermethylated up to 95.44% in the HC group, 91.67% in the DH group, and 90.00% in the normal diet group. Histological examination showed that adipocytes in the DH group were smaller than those in the HC group, indicating a potential role of RAS in obesity. This study indicated that RAS could ameliorate obesity induced by HFD and that the molecular mechanism might be associated with the expression of the FTO gene.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Drugs, Chinese Herbal/administration & dosage , Obesity/drug therapy , Weight Gain/drug effects , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors , Angelica sinensis , Animals , Body Weight/drug effects , Diet, High-Fat/adverse effects , Drugs, Chinese Herbal/chemistry , Gene Expression Regulation/drug effects , Humans , Mice , Mice, Obese , Obesity/metabolism , Obesity/pathology
15.
Biosci Rep ; 37(6)2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29026004

ABSTRACT

The aim of the present study was to explore the effects of oxidative stress induced by CoCl2 and H2O2 on the regulation of bioenergetics of esophageal squamous cell carcinoma (ESCC) cell line TE-1 and analyze its underlying mechanism. Western blot results showed that CoCl2 and H2O2 treatment of TE-1 cells led to significant reduction in mitochondrial respiratory chain complex subunits expression and increasing intracellular reactive oxygen species (ROS) production. We further found that TE-1 cells treated with CoCl2, a hypoxia-mimicking reagent, dramatically reduced the oxygen consumption rate (OCR) and increased the extracellular acidification rate (ECAR). However, H2O2 treatment decreased both the mitochondrial respiration and aerobic glycolysis significantly. Moreover, we found that H2O2 induces apoptosis in TE-1 cells through the activation of PARP, Caspase 3, and Caspase 9. Therefore, our findings indicate that CoCl2 and H2O2 could cause mitochondrial dysfunction by up-regulation of ROS and regulating the cellular bioenergy metabolism, thus affecting the survival of tumor cells.


Subject(s)
Carcinoma, Squamous Cell/pathology , Energy Metabolism/physiology , Esophageal Neoplasms/pathology , Oxidative Stress/physiology , Apoptosis/physiology , Carcinoma, Squamous Cell/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Survival/physiology , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma , Humans , Mitochondria/pathology , Oxygen Consumption/physiology , Reactive Oxygen Species/metabolism
16.
J Agric Food Chem ; 65(41): 9078-9086, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28950698

ABSTRACT

A cocultivation system of Astragalus membranaceus hairy root cultures (AMHRCs) and immobilized food-grade fungi was established for the enhanced production of calycosin (CA) and formononetin (FO). The highest accumulations of CA (730.88 ± 63.72 µg/g DW) and FO (1119.42 ± 95.85 µg/g DW) were achieved in 34 day-old AMHRCs cocultured with immobilized A. niger (IAN) for 54 h, which were 7.72- and 18.78-fold higher than CA and FO in nontreated control, respectively. IAN deglycosylation could promote the formation of CA and FO by conversion of their glycoside precursors. IAN elicitation could intensify the generation of endogenous signal molecules involved in plant defense response, which contributed to the significantly up-regulated expression of genes in CA and FO biosynthetic pathway. Overall, the coupled culture of IAN and AMHRCs offered a promising and effective in vitro approach to enhance the production of two health-promoting isoflavone aglycones for possible nutraceutical and pharmaceutical uses.


Subject(s)
Aspergillus niger/physiology , Astragalus propinquus/metabolism , Iridoids/metabolism , Isoflavones/metabolism , Plant Extracts/metabolism , Plant Roots/microbiology , Astragalus propinquus/chemistry , Astragalus propinquus/growth & development , Astragalus propinquus/microbiology , Cell Culture Techniques , Gene Expression Regulation, Plant , Glycosylation , Iridoids/analysis , Isoflavones/analysis , Plant Extracts/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism
17.
J Pharm Biomed Anal ; 145: 339-345, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28710995

ABSTRACT

Nowadays, green extraction of bioactive compounds from medicinal plants has gained increasing attention. As green solvent, deep eutectic solvent (DES) have been highly rated to replace toxic organic solvents in extraction process. In present study, to simultaneous extraction five main bioactive compounds from fig leaves, DES was tailor-made. The tailor-made DES composed of a 3:3:3 molar ratio of glycerol, xylitol and D-(-)-Fructose showed enhanced extraction yields for five target compounds simultaneously compared with traditional methanol and non-tailor DESs. Then, the tailor-made DES based extraction methods have compared and microwave-assisted extraction was selected and optimized due to its high extraction yields with lower time consumption. The influencing parameters including extraction temperature, liquid-solid ratio, and extraction time were optimized using response surface methodology (RSM). Under optimal conditions the extraction yield of caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten was 6.482mg/g, 16.34mg/g, 5.207mg/g, 15.22mg/g and 2.475mg/g, respectively. Macroporous resin D101 has been used to recovery target compounds with recovery yields of 79.2%, 83.4%, 85.5%, 81.2% and 75.3% for caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten, respectively. The present study suggests that DESs are truly designer and efficient solvents and the method we developed was efficient and sustainable for extraction main compounds from Fig leaves.mg/g.


Subject(s)
Ficus , Furocoumarins , Plant Leaves , Polyphenols , Solvents
18.
Lab Chip ; 17(10): 1725-1731, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28447086

ABSTRACT

Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.


Subject(s)
Acoustic Stimulation/instrumentation , Caenorhabditis elegans/radiation effects , Lab-On-A-Chip Devices , Neurobiology/instrumentation , Sensory Receptor Cells/radiation effects , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Molecular Imaging/methods , Neurobiology/methods , Sensory Receptor Cells/physiology , Ultrasonic Waves
19.
Gene ; 599: 92-98, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27838456

ABSTRACT

We have previously reported that radix Angelica sinensis (RAS) suppressed body weight and altered the expression of the fat mass and obesity associated (FTO) gene in mice with high fat diet (HFD)-induced obesity. In the present study we performed RNA sequencing-mediated transcriptome analysis to elucidate the molecular mechanisms underlying the anti-obesogenic effects of RAS in mice. The results revealed that 36 differentially-expressed genes (DEGs) were identified in adipose tissues from the RAS supplementation group (DH) and control group (HC). These 36 DEGs were clustered into 297 functional gene ontology (GO) categories, among which several GO annotations and signaling pathways were associated with lipid homeostasis. Six out of the 36 DEGs were identified to be involved in lipid metabolism, with the APOA2 gene a potential anti-obesogenic influence. The expression pattern revealed by RNA-Seq was identical to the results of quantitative real-time PCR (qPCR). Therefore, RAS supplementation in HFD-induced obese mice was associated with an anti-obesogenic global transcriptomic response. This study provides insight into potential applications of RAS in obesity therapy.


Subject(s)
Adipose Tissue/drug effects , Adipose Tissue/metabolism , Anti-Obesity Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Obesity/drug therapy , Obesity/genetics , Phytotherapy , Angelica sinensis , Animals , Diet, High-Fat/adverse effects , Female , Gene Expression Profiling , Gene Regulatory Networks/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Mice , Obesity/etiology , RNA, Messenger/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
20.
Int J Syst Evol Microbiol ; 66(11): 4760-4765, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27528019

ABSTRACT

A novel Gram-stain-positive, strictly aerobic, endospore-forming, rod-shaped bacterial strain 7578-24T was isolated from ripened Pu'er tea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 7578-24T clustered with species of the genus Pullulanibacillus in the family Sporolactobacillaceae with 97.8-95.2 % sequence similarities, and was most closely related to Pullulanibacillus pueri YN3T with 97.8 % 16S rRNA gene sequence similarity. The DNA-DNA relatedness value between strain 7578-24T and P. pueri YN3T was 35 %. Strain 7578-24T had a cell-wall type A1γ peptidoglycan with meso-diaminopimelic acid as the diagnostic diamino acid. The major menaquinone was menaquinone 7 (MK-7). C18 : 1ω7c (45.4 %), anteiso-C17 : 0 (30.6 %) and anteiso-C15 : 0 (10.1 %) were the predominant fatty acids, and diphosphatidylglycerol, phosphatidylglycerol, five unknown phospholipids and one unknown aminolipid were the major polar lipids. The DNA G+C content of strain 7578-24T was 45.2 mol%. Strain 7578-24T could be differentiated from other related species of the genus Pullulanibacillus based on phenotypic characteristics, chemotaxonomic differences, phylogenetic analysis and DNA-DNA hybridization data. On the basis of polyphasic evidence from this study, a novel species of the genus Pullulanibacillus named Pullulanibacillus camelliae sp. nov. is proposed, with strain 7578-24T (=CGMCC 1.15371T=JCM 31236T) as the type strain.


Subject(s)
Bacillales/classification , Phylogeny , Tea/microbiology , Bacillales/genetics , Bacillales/isolation & purification , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL