Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Hear Res ; 444: 108972, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38359485

ABSTRACT

Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.


Subject(s)
Auditory Cortex , Electroencephalography , Humans , Male , Female , Semantics , Acoustic Stimulation , Evoked Potentials , Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Magnetic Resonance Imaging , Brain Mapping
2.
J Neurosci ; 42(25): 5034-5046, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35534226

ABSTRACT

The dynamics of information flow within the auditory cortical hierarchy associated with speech processing and the emergence of hemispheric specialization remain incompletely understood. To study these questions with high spatiotemporal resolution, intracranial recordings in 29 human neurosurgical patients of both sexes were obtained while subjects performed a semantic classification task. Neural activity was recorded from posteromedial portion of Heschl's gyrus (HGPM) and anterolateral portion of Heschl's gyrus (HGAL), planum temporale (PT), planum polare, insula, and superior temporal gyrus (STG). Responses to monosyllabic words exhibited early gamma power increases and a later suppression of alpha power, envisioned to represent feedforward activity and decreased feedback signaling, respectively. Gamma activation and alpha suppression had distinct magnitude and latency profiles. HGPM and PT had the strongest gamma responses with shortest onset latencies, indicating that they are the earliest auditory cortical processing stages. The origin of attenuated top-down influences in auditory cortex, as indexed by alpha suppression, was in STG and HGAL. Gamma responses and alpha suppression were typically larger to nontarget words than tones. Alpha suppression was uniformly greater to target versus nontarget stimuli. Hemispheric bias for words versus tones and for target versus nontarget words, when present, was left lateralized. Better task performance was associated with increased gamma activity in the left PT and greater alpha suppression in HGPM and HGAL bilaterally. The prominence of alpha suppression during semantic classification and its accessibility for noninvasive electrophysiologic studies suggests that this measure is a promising index of auditory cortical speech processing.SIGNIFICANCE STATEMENT Understanding the dynamics of cortical speech processing requires the use of active tasks. This is the first comprehensive intracranial electroencephalography study to examine cortical activity within the superior temporal plane, lateral superior temporal gyrus, and the insula during a semantic classification task. Distinct gamma activation and alpha suppression profiles clarify the functional organization of feedforward and feedback processing within the auditory cortical hierarchy. Asymmetries in cortical speech processing emerge at early processing stages. Relationships between cortical activity and task performance are interpreted in the context of current models of speech processing. Results lay the groundwork for iEEG studies using connectivity measures of the bidirectional information flow within the auditory processing hierarchy.


Subject(s)
Auditory Cortex , Speech Perception , Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging , Male , Speech , Speech Perception/physiology
3.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34475209

ABSTRACT

Adults can learn to identify nonnative speech sounds with training, albeit with substantial variability in learning behavior. Increases in behavioral accuracy are associated with increased separability for sound representations in cortical speech areas. However, it remains unclear whether individual auditory neural populations all show the same types of changes with learning, or whether there are heterogeneous encoding patterns. Here, we used high-resolution direct neural recordings to examine local population response patterns, while native English listeners learned to recognize unfamiliar vocal pitch patterns in Mandarin Chinese tones. We found a distributed set of neural populations in bilateral superior temporal gyrus and ventrolateral frontal cortex, where the encoding of Mandarin tones changed throughout training as a function of trial-by-trial accuracy ("learning effect"), including both increases and decreases in the separability of tones. These populations were distinct from populations that showed changes as a function of exposure to the stimuli regardless of trial-by-trial accuracy. These learning effects were driven in part by more variable neural responses to repeated presentations of acoustically identical stimuli. Finally, learning effects could be predicted from speech-evoked activity even before training, suggesting that intrinsic properties of these populations make them amenable to behavior-related changes. Together, these results demonstrate that nonnative speech sound learning involves a wide array of changes in neural representations across a distributed set of brain regions.


Subject(s)
Frontal Lobe/physiology , Learning/physiology , Speech Perception/physiology , Acoustic Stimulation , Adult , Brain/physiology , Evoked Potentials, Auditory/physiology , Female , Humans , Language , Male , Middle Aged , Phonetics , Pitch Perception/physiology , Speech/physiology , Speech Acoustics , Temporal Lobe/physiology
4.
Cereb Cortex ; 31(12): 5435-5448, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34117741

ABSTRACT

Elucidating neural signatures of sensory processing across consciousness states is a major focus in neuroscience. Noninvasive human studies using the general anesthetic propofol reveal differential effects on auditory cortical activity, with a greater impact on nonprimary and auditory-related areas than primary auditory cortex. This study used intracranial electroencephalography to examine cortical responses to vowel sequences during induction of general anesthesia with propofol. Subjects were adult neurosurgical patients with intracranial electrodes placed to identify epileptic foci. Data were collected before electrode removal surgery. Stimuli were vowel sequences presented in a target detection task during awake, sedated, and unresponsive states. Averaged evoked potentials (AEPs) and high gamma (70-150 Hz) power were measured in auditory, auditory-related, and prefrontal cortex. In the awake state, AEPs were found throughout studied brain areas; high gamma activity was limited to canonical auditory cortex. Sedation led to a decrease in AEP magnitude. Upon LOC, there was a decrease in the superior temporal gyrus and adjacent auditory-related cortex and a further decrease in AEP magnitude in core auditory cortex, changes in the temporal structure and increased trial-to-trial variability of responses. The findings identify putative biomarkers of LOC and serve as a foundation for future investigations of altered sensory processing.


Subject(s)
Auditory Cortex , Wakefulness , Acoustic Stimulation , Adult , Auditory Cortex/physiology , Electroencephalography , Electrophysiology , Evoked Potentials, Auditory/physiology , Humans
5.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33419861

ABSTRACT

There is considerable interest in understanding cortical processing and the function of top-down and bottom-up human neural circuits that control speech production. Research efforts to investigate these circuits are aided by analysis of spectro-temporal response characteristics of neural activity recorded by electrocorticography (ECoG). Further, cortical processing may be altered in the case of hearing-impaired cochlear implant (CI) users, as electric excitation of the auditory nerve creates a markedly different neural code for speech compared with that of the functionally intact hearing system. Studies of cortical activity in CI users typically record scalp potentials and are hampered by stimulus artifact contamination and by spatiotemporal filtering imposed by the skull. We present a unique case of a CI user who required direct recordings from the cortical surface using subdural electrodes implanted for epilepsy assessment. Using experimental conditions where the subject vocalized in the presence (CIs ON) or absence (CIs OFF) of auditory feedback, or listened to playback of self-vocalizations without production, we observed ECoG activity primarily in γ (32-70 Hz) and high γ (70-150 Hz) bands at focal regions on the lateral surface of the superior temporal gyrus (STG). High γ band responses differed in their amplitudes across conditions and cortical sites, possibly reflecting different rates of stimulus presentation and differing levels of neural adaptation. STG γ responses to playback and vocalization with auditory feedback were not different from responses to vocalization without feedback, indicating this activity reflects not only auditory, but also attentional, efference-copy, and sensorimotor processing during speech production.


Subject(s)
Cochlear Implants , Speech Perception , Acoustic Stimulation , Auditory Perception , Electrocorticography , Feedback , Humans , Speech
6.
Cereb Cortex ; 31(2): 1131-1148, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33063098

ABSTRACT

The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.


Subject(s)
Acoustic Stimulation/methods , Electroencephalography/methods , Psychomotor Performance/physiology , Speech Perception/physiology , Temporal Lobe/physiology , Adolescent , Adult , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Female , Humans , Male , Middle Aged , Temporal Lobe/diagnostic imaging , Temporal Lobe/surgery , Young Adult
7.
Neuropsychologia ; 150: 107691, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33227284

ABSTRACT

This work examines how sounds are held in auditory working memory (AWM) in humans by examining oscillatory local field potentials (LFPs) in candidate brain regions. Previous fMRI studies by our group demonstrated blood oxygenation level-dependent (BOLD) response increases during maintenance in auditory cortex, inferior frontal cortex and the hippocampus using a paradigm with a delay period greater than 10s. The relationship between such BOLD changes and ensemble activity in different frequency bands is complex, and the long delay period raised the possibility that long-term memory mechanisms were engaged. Here we assessed LFPs in different frequency bands in six subjects with recordings from all candidate brain regions using a paradigm with a short delay period of 3 s. Sustained delay activity was demonstrated in all areas, with different patterns in the different areas. Enhancement in low frequency (delta) power and suppression across higher frequencies (beta/gamma) were demonstrated in primary auditory cortex in medial Heschl's gyrus (HG) whilst non-primary cortex showed patterns of enhancement and suppression that altered at different levels of the auditory hierarchy from lateral HG to superior- and middle-temporal gyrus. Inferior frontal cortex showed increasing suppression with increasing frequency. The hippocampus and parahippocampal gyrus showed low frequency increases and high frequency decreases in oscillatory activity. This work demonstrates sustained activity patterns during AWM maintenance, with prominent low-frequency increases in medial temporal lobe regions.


Subject(s)
Auditory Cortex , Electrocorticography , Acoustic Stimulation , Brain Mapping , Humans , Magnetic Resonance Imaging , Memory, Short-Term , Temporal Lobe
8.
J Neurosci ; 39(44): 8679-8689, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31533976

ABSTRACT

The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl's gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however, their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (4 female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.SIGNIFICANCE STATEMENT To understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl's gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.


Subject(s)
Alpha Rhythm , Speech Perception/physiology , Temporal Lobe/physiology , Acoustic Stimulation , Adult , Auditory Cortex/physiology , Auditory Pathways/physiology , Evoked Potentials, Auditory , Female , Gamma Rhythm , Humans , Male , Middle Aged , Young Adult
9.
J Neurosci ; 39(33): 6482-6497, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31189576

ABSTRACT

A key challenge in neuroscience is understanding how sensory stimuli give rise to perception, especially when the process is supported by neural activity from an extended network of brain areas. Perception is inherently subjective, so interrogating its neural signatures requires, ideally, a combination of three factors: (1) behavioral tasks that separate stimulus-driven activity from perception per se; (2) human subjects who self-report their percepts while performing those tasks; and (3) concurrent neural recordings acquired at high spatial and temporal resolution. In this study, we analyzed human electrocorticographic recordings obtained during an auditory task which supported mutually exclusive perceptual interpretations. Eight neurosurgical patients (5 male; 3 female) listened to sequences of repeated triplets where tones were separated in frequency by several semitones. Subjects reported spontaneous alternations between two auditory perceptual states, 1-stream and 2-stream, by pressing a button. We compared averaged auditory evoked potentials (AEPs) associated with 1-stream and 2-stream percepts and identified significant differences between them in primary and nonprimary auditory cortex, surrounding auditory-related temporoparietal cortex, and frontal areas. We developed classifiers to identify spatial maps of percept-related differences in the AEP, corroborating findings from statistical analysis. We used one-dimensional embedding spaces to perform the group-level analysis. Our data illustrate exemplar high temporal resolution AEP waveforms in auditory core region; explain inconsistencies in perceptual effects within auditory cortex, reported across noninvasive studies of streaming of triplets; show percept-related changes in frontoparietal areas previously highlighted by studies that focused on perceptual transitions; and demonstrate that auditory cortex encodes maintenance of percepts and switches between them.SIGNIFICANCE STATEMENT The human brain has the remarkable ability to discern complex and ambiguous stimuli from the external world by parsing mixed inputs into interpretable segments. However, one's perception can deviate from objective reality. But how do perceptual discrepancies occur? What are their anatomical substrates? To address these questions, we performed intracranial recordings in neurosurgical patients as they reported their perception of sounds associated with two mutually exclusive interpretations. We identified signatures of subjective percepts as distinct from sound-driven brain activity in core and non-core auditory cortex and frontoparietal cortex. These findings were compared with previous studies of auditory bistable perception and suggested that perceptual transitions and maintenance of perceptual states were supported by common neural substrates.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Adult , Electrocorticography , Female , Humans , Male , Middle Aged , Young Adult
10.
Hear Res ; 371: 53-65, 2019 01.
Article in English | MEDLINE | ID: mdl-30500619

ABSTRACT

Understanding cortical processing of spectrally degraded speech in normal-hearing subjects may provide insights into how sound information is processed by cochlear implant (CI) users. This study investigated electrocorticographic (ECoG) responses to noise-vocoded speech and related these responses to behavioral performance in a phonemic identification task. Subjects were neurosurgical patients undergoing chronic invasive monitoring for medically refractory epilepsy. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands). ECoG responses were obtained from Heschl's gyrus (HG) and superior temporal gyrus (STG), and were examined within the high gamma frequency range (70-150 Hz). All subjects performed at chance accuracy with speech degraded to 1 and 2 spectral bands, and at or near ceiling for clear speech. Inter-subject variability was observed in the 3- and 4-band conditions. High gamma responses in posteromedial HG (auditory core cortex) were similar for all vocoded conditions and clear speech. A progressive preference for clear speech emerged in anterolateral segments of HG, regardless of behavioral performance. On the lateral STG, responses to all vocoded stimuli were larger in subjects with better task performance. In contrast, both behavioral and neural responses to clear speech were comparable across subjects regardless of their ability to identify degraded stimuli. Findings highlight differences in representation of spectrally degraded speech across cortical areas and their relationship to perception. The results are in agreement with prior non-invasive results. The data provide insight into the neural mechanisms associated with variability in perception of degraded speech and potentially into sources of such variability in CI users.


Subject(s)
Auditory Cortex/physiology , Speech Perception/physiology , Acoustic Stimulation , Adult , Auditory Cortex/anatomy & histology , Cochlear Implants , Electrocorticography , Female , Gamma Rhythm/physiology , Humans , Male , Middle Aged , Phonetics , Sound Spectrography , Speech Acoustics , Temporal Lobe/anatomy & histology , Temporal Lobe/physiology , Trail Making Test , Young Adult
11.
J Neurosci ; 38(39): 8441-8452, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30126970

ABSTRACT

The systems-level mechanisms underlying loss of consciousness (LOC) under anesthesia remain unclear. General anesthetics suppress sensory responses within higher-order cortex and feedback connections, both critical elements of predictive coding hypotheses of conscious perception. Responses to auditory novelty may offer promise as biomarkers for consciousness. This study examined anesthesia-induced changes in auditory novelty responses over short (local deviant [LD]) and long (global deviant [GD]) time scales, envisioned to engage preattentive and conscious levels of processing, respectively. Electrocorticographic recordings were obtained in human neurosurgical patients (3 male, 3 female) from four hierarchical processing levels: core auditory cortex, non-core auditory cortex, auditory-related, and PFC. Stimuli were vowel patterns incorporating deviants within and across stimuli (LD and GD). Subjects were presented with stimuli while awake, and during sedation (responsive) and following LOC (unresponsive) under propofol anesthesia. LD and GD effects were assayed as the averaged evoked potential and high gamma (70-150 Hz) activity. In the awake state, LD and GD effects were present in all recorded regions, with averaged evoked potential effects more broadly distributed than high gamma activity. Under sedation, LD effects were preserved in all regions, except PFC. LOC was accompanied by loss of LD effects outside of auditory cortex. By contrast, GD effects were markedly suppressed under sedation in all regions and were absent following LOC. Thus, although the presence of GD effects is indicative of being awake, its absence is not indicative of LOC. Loss of LD effects in higher-order cortical areas may constitute an alternative biomarker of LOC.SIGNIFICANCE STATEMENT Development of a biomarker that indexes changes in the brain upon loss of consciousness (LOC) under general anesthesia has broad implications for elucidating the neural basis of awareness and clinical relevance to mechanisms of sleep, coma, and disorders of consciousness. Using intracranial recordings from neurosurgery patients, we investigated changes in the activation of cortical networks involved in auditory novelty detection over short (local deviance) and long (global deviance) time scales associated with sedation and LOC under propofol anesthesia. Our results indicate that, whereas the presence of global deviance effects can index awareness, their loss cannot serve as a biomarker for LOC. The dramatic reduction of local deviance effects in areas beyond auditory cortex may constitute an alternative biomarker of LOC.


Subject(s)
Anesthesia, General , Auditory Cortex/physiology , Auditory Perception/physiology , Awareness/physiology , Prefrontal Cortex/physiology , Acoustic Stimulation , Adult , Anesthetics, General/administration & dosage , Auditory Cortex/drug effects , Auditory Perception/drug effects , Awareness/drug effects , Brain Waves , Electrocorticography , Evoked Potentials, Auditory/drug effects , Female , Humans , Male , Prefrontal Cortex/drug effects , Young Adult
12.
Neuroimage ; 152: 78-93, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28254512

ABSTRACT

The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.


Subject(s)
Auditory Cortex/drug effects , Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/drug effects , Propofol/administration & dosage , Acoustic Stimulation , Adult , Anesthetics, Intravenous/administration & dosage , Auditory Perception/drug effects , Electrocorticography , Female , Gamma Rhythm , Humans , Male , Middle Aged
13.
J Neurosci ; 36(7): 2302-15, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26888939

ABSTRACT

The present study investigated how pitch frequency, a perceptually relevant aspect of periodicity in natural human vocalizations, is encoded in Heschl's gyrus (HG), and how this information may be used to influence vocal pitch motor control. We recorded local field potentials from multicontact depth electrodes implanted in HG of 14 neurosurgical epilepsy patients as they vocalized vowel sounds and received brief (200 ms) pitch perturbations at 100 Cents in their auditory feedback. Event-related band power responses to vocalizations showed sustained frequency following responses that tracked voice fundamental frequency (F0) and were significantly enhanced in posteromedial HG during speaking compared with when subjects listened to the playback of their own voice. In addition to frequency following responses, a transient response component within the high gamma frequency band (75-150 Hz) was identified. When this response followed the onset of vocalization, the magnitude of the response was the same for the speaking and playback conditions. In contrast, when this response followed a pitch shift, its magnitude was significantly enhanced during speaking compared with playback. We also observed that, in anterolateral HG, the power of high gamma responses to pitch shifts correlated with the magnitude of compensatory vocal responses. These findings demonstrate a functional parcellation of HG with neural activity that encodes pitch in natural human voice, distinguishes between self-generated and passively heard vocalizations, detects discrepancies between the intended and heard vocalization, and contains information about the resulting behavioral vocal compensations in response to auditory feedback pitch perturbations. SIGNIFICANCE STATEMENT: The present study is a significant contribution to our understanding of sensor-motor mechanisms of vocal production and motor control. The findings demonstrate distinct functional parcellation of core and noncore areas within human auditory cortex on Heschl's gyrus that process natural human vocalizations and pitch perturbations in the auditory feedback. In addition, our data provide evidence for distinct roles of high gamma neural oscillations and frequency following responses for processing periodicity in human vocalizations during vocal production and motor control.


Subject(s)
Auditory Cortex/physiology , Speech/physiology , Voice/physiology , Acoustic Stimulation , Adult , Algorithms , Electrocorticography , Electrodes, Implanted , Electroencephalography , Epilepsy/surgery , Feedback , Female , Functional Laterality/physiology , Gamma Rhythm , Humans , Male , Middle Aged , Pitch Perception , Young Adult
14.
Handb Clin Neurol ; 129: 225-44, 2015.
Article in English | MEDLINE | ID: mdl-25726272

ABSTRACT

This chapter provides an overview of current invasive recording methodology and experimental paradigms used in the studies of human auditory cortex. Invasive recordings can be obtained from neurosurgical patients undergoing clinical electrophysiologic evaluation for medically refractory epilepsy or brain tumors. This provides a unique research opportunity to study the human auditory cortex with high resolution both in time (milliseconds) and space (millimeters) and to generate valuable information about its organization and function. A historic overview presents the development of the experimental approaches from the pioneering works of Wilder Penfield to modern day. Practical issues regarding research subject population, stimulus presentation, data collection, and analysis are discussed for acute (intraoperative) and chronic experiments. Illustrative examples are provided from experimental paradigms, including studies of spectrotemporal processing, functional connectivity, and functional lesioning in human auditory cortex.


Subject(s)
Auditory Cortex/physiology , Brain Mapping , Electrophysiology , Acoustic Stimulation , Auditory Perception , Humans
15.
J Neurosci ; 35(4): 1513-20, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25632128

ABSTRACT

Retrieving the names of friends, loved ones, and famous people is a fundamental human ability. This ability depends on the left anterior temporal lobe (ATL), where lesions can be associated with impaired naming of people regardless of modality (e.g., picture or voice). This finding has led to the idea that the left ATL is a modality-independent convergence region for proper naming. Hypotheses for how proper-name dispositions are organized within the left ATL include both a single modality-independent (heteromodal) convergence region and spatially discrete modality-dependent (unimodal) regions. Here we show direct electrophysiologic evidence that the left ATL is heteromodal for proper-name retrieval. Using intracranial recordings placed directly on the surface of the left ATL in human subjects, we demonstrate nearly identical responses to picture and voice stimuli of famous U.S. politicians during a naming task. Our results demonstrate convergent and robust large-scale neurophysiologic responses to picture and voice naming in the human left ATL. This finding supports the idea of heteromodal (i.e., transmodal) dispositions for proper naming in the left ATL.


Subject(s)
Brain Waves/physiology , Functional Laterality/physiology , Mental Recall/physiology , Names , Temporal Lobe/physiology , Acoustic Stimulation , Adult , Brain Mapping , Electric Stimulation , Electrodes, Implanted , Electroencephalography , Humans , Male , Middle Aged , Neuropsychological Tests , Photic Stimulation , Semantics , Spectrum Analysis
16.
Int J Psychophysiol ; 95(2): 191-201, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24681353

ABSTRACT

Selective attention enhances cortical activity representing an attended sound stream in human posterolateral superior temporal gyrus (PLST). It is unclear, however, what mechanisms are associated with a target detection task that necessitates sustained attention (vigilance) to a sound stream. We compared responses elicited by target and non-target sounds, and to sounds presented in a passive-listening paradigm. Subjects were neurosurgical patients undergoing invasive monitoring for medically refractory epilepsy. Stimuli were complex tones, band-limited noise bursts and speech syllables. High gamma cortical activity (70-150 Hz) was examined in all subjects using subdural grid electrodes implanted over PLST. Additionally, responses were measured from depth electrodes implanted within Heschl's gyrus (HG) in one subject. Responses to target sounds recorded from PLST were increased when compared to responses elicited by the same sounds when they were not-targets, and when they were presented during passive listening. Increases in high gamma activity to target sounds occurred during later portions (after 250 ms) of the response. These increases were related to the task and not to detailed stimulus characteristics. In contrast, earlier activity that did not vary across conditions did represent stimulus acoustic characteristics. Effects observed on PLST were not noted in HG. No consistent effects were noted in the averaged evoked potentials in either cortical region. We conclude that task dependence modulates later activity in PLST during vigilance. Later activity may represent feedback from higher cortical areas. Study of concurrently recorded activity from frontoparietal areas is necessary to further clarify task-related modulation of activity on PLST.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , Epilepsy/pathology , Evoked Potentials, Auditory/physiology , Signal Detection, Psychological/physiology , Acoustic Stimulation , Adult , Brain Mapping , Electroencephalography , Humans , Magnetic Resonance Imaging , Male , Psychoacoustics , Reaction Time/physiology , Sound , Time Factors , Young Adult
17.
Cereb Cortex ; 24(2): 340-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23048019

ABSTRACT

The place of the posterolateral superior temporal (PLST) gyrus within the hierarchical organization of the human auditory cortex is unknown. Understanding how PLST processes spectral information is imperative for its functional characterization. Pure-tone stimuli were presented to subjects undergoing invasive monitoring for refractory epilepsy. Recordings were made using high-density subdural grid electrodes. Pure tones elicited robust high gamma event-related band power responses along a portion of PLST adjacent to the transverse temporal sulcus (TTS). Responses were frequency selective, though typically broadly tuned. In several subjects, mirror-image response patterns around a low-frequency center were observed, but typically, more complex and distributed patterns were seen. Frequency selectivity was greatest early in the response. Classification analysis using a sparse logistic regression algorithm yielded above-chance accuracy in all subjects. Classifier performance typically peaked at 100-150 ms after stimulus onset, was comparable for the left and right hemisphere cases, and was stable across stimulus intensities. Results demonstrate that representations of spectral information within PLST are temporally dynamic and contain sufficient information for accurate discrimination of tone frequencies. PLST adjacent to the TTS appears to be an early stage in the hierarchy of cortical auditory processing. Pure-tone response patterns may aid auditory field identification.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Acoustic Stimulation , Acoustics , Adult , Brain Waves , Electrodes, Implanted , Epilepsy/physiopathology , Evoked Potentials, Auditory , Female , Functional Laterality , Humans , Logistic Models , Male , Middle Aged , Young Adult
18.
Article in English | MEDLINE | ID: mdl-25571557

ABSTRACT

Much less is known about the organization of the human auditory cortex compared to non-human primate auditory cortices. In an effort to further investigate the response properties of human auditory cortex, we present preliminary findings from human subjects implanted with depth electrodes in Heschl's gyrus (HG) as part of their neurosurgical treatment of epilepsy. Each subject had electrocorticography (ECoG) responses taken from medial and lateral HG in response to both speech and non-speech stimuli, including during speech production. Responses were somewhat variable across subjects, but posteromedial HG demonstrated frequency following responses to the stimuli in all subjects to some degree. Results and implications are discussed.


Subject(s)
Auditory Cortex/physiology , Brain Mapping/methods , Electroencephalography/methods , Speech , Acoustic Stimulation , Electrodes , Evoked Potentials, Auditory/physiology , Humans , Speech Perception/physiology , Temporal Lobe/physiology
19.
Hear Res ; 305: 57-73, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23792076

ABSTRACT

Successful categorization of phonemes in speech requires that the brain analyze the acoustic signal along both spectral and temporal dimensions. Neural encoding of the stimulus amplitude envelope is critical for parsing the speech stream into syllabic units. Encoding of voice onset time (VOT) and place of articulation (POA), cues necessary for determining phonemic identity, occurs within shorter time frames. An unresolved question is whether the neural representation of speech is based on processing mechanisms that are unique to humans and shaped by learning and experience, or is based on rules governing general auditory processing that are also present in non-human animals. This question was examined by comparing the neural activity elicited by speech and other complex vocalizations in primary auditory cortex of macaques, who are limited vocal learners, with that in Heschl's gyrus, the putative location of primary auditory cortex in humans. Entrainment to the amplitude envelope is neither specific to humans nor to human speech. VOT is represented by responses time-locked to consonant release and voicing onset in both humans and monkeys. Temporal representation of VOT is observed both for isolated syllables and for syllables embedded in the more naturalistic context of running speech. The fundamental frequency of male speakers is represented by more rapid neural activity phase-locked to the glottal pulsation rate in both humans and monkeys. In both species, the differential representation of stop consonants varying in their POA can be predicted by the relationship between the frequency selectivity of neurons and the onset spectra of the speech sounds. These findings indicate that the neurophysiology of primary auditory cortex is similar in monkeys and humans despite their vastly different experience with human speech, and that Heschl's gyrus is engaged in general auditory, and not language-specific, processing. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".


Subject(s)
Auditory Cortex/physiopathology , Epilepsy/physiopathology , Macaca fascicularis/physiology , Speech Acoustics , Speech Perception , Vocalization, Animal , Voice Quality , Acoustic Stimulation , Adult , Animals , Audiometry, Pure-Tone , Audiometry, Speech , Cues , Electrocardiography , Epilepsy/diagnosis , Epilepsy/psychology , Evoked Potentials, Auditory , Humans , Male , Pattern Recognition, Physiological , Phonetics , Recognition, Psychology , Sound Spectrography , Species Specificity , Time Factors , Time Perception
20.
J Neurophysiol ; 109(5): 1283-95, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23236002

ABSTRACT

Evidence regarding the functional subdivisions of human auditory cortex has been slow to converge on a definite model. In part, this reflects inadequacies of current understanding of how the cortex represents temporal information in acoustic signals. To address this, we investigated spatiotemporal properties of auditory responses in human posterolateral superior temporal (PLST) gyrus to acoustic click-train stimuli using intracranial recordings from neurosurgical patients. Subjects were patients undergoing chronic invasive monitoring for refractory epilepsy. The subjects listened passively to acoustic click-train stimuli of varying durations (160 or 1,000 ms) and rates (4-200 Hz), delivered diotically via insert earphones. Multicontact subdural grids placed over the perisylvian cortex recorded intracranial electrocorticographic responses from PLST and surrounding areas. Analyses focused on averaged evoked potentials (AEPs) and high gamma (70-150 Hz) event-related band power (ERBP). Responses to click trains featured prominent AEP waveforms and increases in ERBP. The magnitude of AEPs and ERBP typically increased with click rate. Superimposed on the AEPs were frequency-following responses (FFRs), most prominent at 50-Hz click rates but still detectable at stimulus rates up to 200 Hz. Loci with the largest high gamma responses on PLST were often different from those sites that exhibited the strongest FFRs. The data indicate that responses of non-core auditory cortex of PLST represent temporal stimulus features in multiple ways. These include an isomorphic representation of periodicity (as measured by the FFR), a representation based on increases in non-phase-locked activity (as measured by high gamma ERBP), and spatially distributed patterns of activity.


Subject(s)
Auditory Cortex/physiopathology , Brain Waves , Epilepsy/physiopathology , Temporal Lobe/physiopathology , Acoustic Stimulation , Adult , Evoked Potentials, Auditory , Female , Functional Laterality , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL