Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Country/Region as subject
Language
Affiliation country
Publication year range
1.
Int J Toxicol ; 43(3): 243-252, 2024.
Article in English | MEDLINE | ID: mdl-38183303

ABSTRACT

This work investigated the safety of extracts obtained from plants growing in Colombia, which have previously shown UV-filter/antigenotoxic properties. The compounds in plant extracts obtained by the supercritical fluid (CO2) extraction method were identified using gas chromatography coupled to mass spectrometry (GC/MS) analysis. Cytotoxicity measured as cytotoxic concentration 50% (CC50) and genotoxicity of the plant extracts and some compounds were studied in human fibroblasts using the trypan blue exclusion assay and the Comet assay, respectively. The extracts from Pipper eriopodon and Salvia aratocensis species and the compound trans-ß-caryophyllene were clearly cytotoxic to human fibroblasts. Conversely, Achyrocline satureioides, Chromolaena pellia, and Lippia origanoides extracts were relatively less cytotoxic with CC50 values of 173, 184, and 89 µg/mL, respectively. The C. pellia and L. origanoides extracts produced some degree of DNA breaks at cytotoxic concentrations. The cytotoxicity of the studied compounds was as follows, with lower CC50 values representing the most cytotoxic compounds: resveratrol (91 µM) > pinocembrin (144 µM) > quercetin (222 µM) > titanium dioxide (704 µM). Quercetin was unique among the compounds assayed in being genotoxic to human fibroblasts. Our work indicates that phytochemicals can be cytotoxic and genotoxic, demonstrating the need to establish safe concentrations of these extracts for their potential use in cosmetics.


Subject(s)
Cell Survival , Fibroblasts , Plant Extracts , Sunscreening Agents , Humans , Sunscreening Agents/toxicity , Sunscreening Agents/chemistry , Plant Extracts/toxicity , Plant Extracts/chemistry , Fibroblasts/drug effects , Cell Survival/drug effects , Comet Assay , Salvia/chemistry , DNA Damage/drug effects , Cells, Cultured , Lippia/chemistry , Gas Chromatography-Mass Spectrometry
2.
Molecules ; 27(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080288

ABSTRACT

Plants are sources of sunscreen ingredients that prevent cellular mutations involved in skin cancer and aging. This study investigated the sunscreen properties of the extracts from some ornamental plants growing in Colombia. The UV filter capability of the flower extracts obtained from Rosa centifolia L., Posoqueria latifolia (Rudge) Schult, and Ipomoea horsfalliae Hook. was examined. Photoprotection efficacies were evaluated using in vitro indices such as sun protection factor and critical wavelength. UVB antigenotoxicity estimates measured with the SOS Chromotest were also obtained. Extract cytotoxicity and genotoxicity were studied in human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Major compounds of the promising flower extracts were identified by UHPLC-ESI+-Orbitrap-MS. The studied extracts showed high photoprotection efficacy and antigenotoxicity against UVB radiation, but only the P. latifolia extract showed broad-spectrum photoprotection at non-cytotoxic concentrations. The P. latifolia extract appeared to be safer for human fibroblast cells and the R. centifolia extract was shown to be moderately cytotoxic and genotoxic at the highest assayed concentrations. The I. horsfalliae extract was unequivocally cytotoxic and genotoxic. The major constituents of the promising extracts were as follows: chlorogenic acid, ecdysterone 20E, rhamnetin-rutinoside, cis-resveratrol-diglucoside, trans-resveratrol-diglucoside in P. latifolia; quercetin, quercetin-glucoside, quercetin-3-rhamnoside, kaempferol, kaempferol-3-glucoside, and kaempferol-rhamnoside in R. centifolia. The potential of the ornamental plants as sources of sunscreen ingredients was discussed.


Subject(s)
Kaempferols , Sunscreening Agents , Flowers , Glucosides , Humans , Plant Extracts/pharmacology , Plants , Quercetin , Sunscreening Agents/pharmacology , Ultraviolet Rays
3.
Nat Prod Commun ; 8(2): 249-52, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23513741

ABSTRACT

The aim of this study was to compare the antiviral activities in vitro of citral, limonene and essential oils (EOs) from Lippia citriodora and L. alba on the replication of yellow fever virus (YFV). Citral and EOs were active before and after virus adsorption on cells; IC50 values were between 4.3 and 25 microg/mL and SI ranged from 1.1 to 10.8. Results indicate that citral could contribute to the antiviral activity of the L. citriodora EO. Limonene was not active and seemed to play an insignificant role in the antiviral activity of the examined EOs.


Subject(s)
Antiviral Agents/pharmacology , Cyclohexenes/pharmacology , Lippia/chemistry , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Terpenes/pharmacology , Yellow fever virus/drug effects , Acyclic Monoterpenes , Limonene
4.
Mem Inst Oswaldo Cruz ; 105(3): 304-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20512244

ABSTRACT

The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Lippia/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Dengue Virus/growth & development , Microbial Sensitivity Tests , Vero Cells , Viral Plaque Assay/methods
5.
Mem. Inst. Oswaldo Cruz ; 105(3): 304-309, May 2010. graf, tab
Article in English | LILACS | ID: lil-547301

ABSTRACT

The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37ºC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50 percent reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 μg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 μg/mL and between 1.9-33.7 μg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.


Subject(s)
Animals , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Lippia/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Virus Replication/drug effects , Chlorocebus aethiops , Dengue Virus/growth & development , Microbial Sensitivity Tests , Vero Cells , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL