Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Biomed Pharmacother ; 170: 116034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141282

ABSTRACT

The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.


Subject(s)
Curcumin , Neoplasms , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/chemistry , Neoplasms/drug therapy , Anti-Inflammatory Agents/therapeutic use , Signal Transduction , Inflammation/drug therapy
2.
J Ethnopharmacol ; 314: 116631, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37172920

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Eucalyptus maculata Hook from the Myrtaceae family is a native Australian plant that is frequently cultivated in Egypt. Many Eucalyptus species, including E. maculata, were widely used by the Dharawal, the indigenous Australian people, for their anti-inflammatory properties. AIM OF THE STUDY: The purpose of this study was to determine the anti-inflammatory activity of the ethanol extract of E. maculata resin exudate, its methylene chloride and n-butanol fractions, as well as the isolated compounds. MATERIALS AND METHODS: the ethanol extract was partitioned by methylene chloride, and n-butanol saturated with water. The fractions were chromatographed to isolate pure compounds. In-vivo anti-inflammatory activity of the ethanol extract, the fractions at a dose of 200 mg/kg, and the isolated compounds (20 mg/kg) was estimated using carrageenan-induced rat paws edema method against indomethacin (20 mg/kg). The activity was supported by histopathological and biochemical parameters. RESULTS: Three isolated compounds were identified as aromadendrin (C1), 7-O-methyl aromadendrin (C2), and naringenin (C3). Our findings demonstrated that the tested fractions significantly reduced the paw edema starting from the 3rd to the 5th hour as compared to the positive control, compounds C2 and C3 showed the greatest significant reduction in paw edema. The ethanol extract, fractions, C2, and C3 demonstrated an anti-inflammatory potential through reducing the levels of TNF-α, IL-6, and PGE2, as well as COX-2 protein expression compared to the negative control. These results were supported by molecular docking, which revealed that the isolated compounds had high affinity to target COX-1 and COX-2 active sites with docking scores ranging from -7.3 to -9.6 kcal mol-1 when compared to ibubrofen (-7.8 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations were also performed and confirmed the docking results. CONCLUSION: The results supported the traditional anti-inflammatory potency of E. maculata Hook, and the biochemical mechanisms underlying this activity were highlighted, opening up new paths for the development of potent herbal anti-inflammatory medicine. Finally, our findings revealed that E. maculata resin constituents could be considered as promising anti-inflammatory drug candidates.


Subject(s)
Eucalyptus , Myrtaceae , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Cyclooxygenase 2/genetics , Molecular Docking Simulation , 1-Butanol , Methylene Chloride/adverse effects , Rats, Sprague-Dawley , Australia , Carrageenan , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Ethanol/therapeutic use , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Gene Expression
3.
Molecules ; 28(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838616

ABSTRACT

Annona glabra Linn is employed in conventional medicine to treat a number of human disorders, including cancer and viruses. In the present investigation, the significant phytochemical components of Annona glabra hexane extract were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Three major compounds were identified in the hexane extract: tritriacontane (30.23%), 13, 17-dimethyl-tritriacontane (22.44%), and limonene (18.97%). MTT assay was used to assess the cytotoxicity of the extract on six human cancer cell lines including liver (HepG-2), pancreas (PANC-1), lung (A-549), breast (MCF-7, HTB-22), prostate (PC-3), and colon (CACO-2, ATB-37). The extract exhibited significant cytotoxic activity against both CACO-2 and A-549 cancer cell lines (IC50 = 47 ± 0.74 µg/mL and 56.82 ± 0.92 µg/mL) in comparison with doxorubicin (IC50 = 31.91 ± 0.81 µg/mL and 23.39 ± 0.43 µg/mL) and of SI of 3.8 and 3.1, respectively. It also induced moderate-to-weak activities against the other cancerous cell lines: PC-3, PANC-1, MCF-7, and HepG-2 (IC50 = 81.86 ± 3.26, 57.34 ± 0.77, 80.31 ± 4.13, and 57.01 ± 0.85 µg/mL) in comparison to doxorubicin (IC50 = 32.9 ± 1.74, 19.07 ± 0.2, 15.48 ± 0.84 and 5.4 ± 0.22 µg/mL, respectively) and SI of 2.2, 3.1, 2.2, and 3.1, respectively. In vitro anti-HSV1 (Herpes simplex 1 virus) and HAV (Hepatitis A virus) activity was evaluated using MTT colorimetric assay with three different protocols to test protective, anti-replicative, and anti-infective antiviral activities, and three separate replications of each experiment were conducted. The plant extract showed promising protective and virucidal activity against HSV1 with no significant difference with acyclovir (79.55 ± 1.67 vs. 68.44 ± 7.62 and 70.91 ± 7.02 vs. 83.76 ± 5.67), while it showed mild protective antiviral activity against HAV (48.08 ±3.46) with no significant difference vs. acyclovir (36.89 ± 6.61). The selected main compounds were examined for their bioactivity through in silico molecular docking, which exhibited that limonene could possess the strongest antiviral properties. These findings support Annona glabra's conventional use, which is an effective source of antiviral and anticancer substances that could be used in pharmaceuticals.


Subject(s)
Annona , Humans , Gas Chromatography-Mass Spectrometry , Annona/chemistry , Antiviral Agents , Limonene , Hexanes , Molecular Docking Simulation , Caco-2 Cells , Doxorubicin , Acyclovir , Plant Extracts/chemistry
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555498

ABSTRACT

The current investigation assessed the effect of the eudesmanolid, Vulgarin (VGN), obtained from Artemisia judaica (A. judaica), on the antidiabetic potential of glibenclamide (GLB) using streptozotocin (STZ) to induce diabetes. Seven groups of rats were used in the study; the first group received the vehicle and served as normal control. The diabetic rats of the second to the fifth groups were treated with the vehicle (negative control), GLB at 5 mg/kg (positive control), VGN at 10 mg/kg (VGN-10) and VGN at 20 mg/kg (VGN-20), respectively. The diabetic rats of the sixth and seventh groups were administered combinations of GLB plus VGN-10 and GLB plus VGN-20, respectively. The diabetic rats treated with GLB plus VGN-20 combination showed marked improvement in the fasting blood glucose (FBG), insulin and glycated hemoglobin (HbA1c), as well as the lipid profile, compared with those treated with GLB alone. Further, the pancreatic tissues of the diabetic rats that received the GLB+VGN-20 combination showed superior improvements in lipid peroxidation and antioxidant parameters than those of GLB monotherapy. The insulin content of the ß-cells was restored in all treatments, while the levels of glucagon and somatostatin of the α- and δ-endocrine cells were reduced in the pancreatic islets. In addition, the concurrent administration of GLB+VGN-20 was the most effective in restoring PEPCK and G6Pase mRNA expression in the liver. In conclusion, the results demonstrated that the GLB+VGN-20 combination led to greater glycemic improvement in diabetic rats compared with GLB monotherapy through its antioxidant effect and capability to modulate PEPCK and G6Pase gene expression in their livers.


Subject(s)
Artemisia , Diabetes Mellitus, Experimental , Sesquiterpenes , Rats , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Glyburide/pharmacology , Glyburide/therapeutic use , Streptozocin , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Insulin , Antioxidants/pharmacology , Phosphoenolpyruvate Carboxylase , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Lactones , Blood Glucose
5.
Biology (Basel) ; 11(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35625467

ABSTRACT

D-carvone is a natural monoterpene found in abundance in the essential oil of aromatic medicinal plants with a wide range of pharmacological values. However, the impact of D-carvone on liver fibrosis remains unclear. This study aimed to evaluate the anti-fibrotic potential of D-carvone in a rat model of liver fibrosis and to clarify the possible underlying mechanisms. Liver fibrosis was induced in rats by carbon tetrachloride, CCl4 (2.5 mL/kg, interperitoneally every 72 h for 8 weeks). Oral treatment of rats with D-carvone (50 mg/kg, daily) started on the 3rd week of CCl4 administration. D-carvone significantly enhanced liver functions (ALT, AST), oxidant/antioxidant status (MDA, SOD, GSH, total antioxidant capacity; TAC), as well as histopathological changes. Moreover, D-carvone effectively attenuated the progression of liver fibrosis, evident by the decreased collagen deposition and fibrosis score by Masson trichrome staining (MT) and α-SMA protein expression. Moreover, D-carvone administration resulted in a significant downregulation of the pro-fibrogenic markers TGF-ß1 and SMAD3 and upregulation of MMP9. These findings reveal the anti-fibrotic effect of D-carvone and suggest regulation of the TGF-ß1/SMAD3 pathway, together with the antioxidant activity as a mechanistic cassette, underlines this effect. Therefore, D-carvone could be a viable candidate for inhibiting liver fibrosis and other oxidative stress-related hepatic diseases. Clinical studies to support our hypothesis are warranted.

6.
Food Funct ; 13(11): 6180-6194, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35583008

ABSTRACT

In the present study, we aimed to delineate the neuroprotective potential of thymol (THY) against neurotoxicity and cognitive deterioration induced by thioacetamide (TAA) in an experimental model of hepatic encephalopathy (HE). Rats received TAA (100 mg kg-1, intraperitoneally injected, three times per week) for two weeks. THY (30 and 60 mg kg-1), and Vit E (100 mg k-1) were administered daily by oral gavage for 30 days after HE induction. Supplementation with THY significantly improved liver function, reduced serum ammonia level, and ameliorated the locomotor and cognitive deficits. THY effectively modulated the alteration in oxidative stress markers, neurotransmitters, and brain ATP content. Histopathology of liver and brain tissues showed that THY had ameliorated TAA-induced damage, astrocyte swelling and brain edema. Furthermore, THY downregulated NF-kB and upregulated GFAP protein expression. In addition, THY significantly promoted CREB and BDNF expression at both mRNA and protein levels, together with enhancing brain cAMP level. In conclusion, THY exerted hepato- and neuroprotective effects against HE by mitigating hepatotoxicity, hyperammonemia and brain ATP depletion via its antioxidant, anti-inflammatory effects in addition to activation of the CREB/BDNF signaling pathway.


Subject(s)
Hepatic Encephalopathy , Neurotoxicity Syndromes , Adenosine Triphosphate/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cognition , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Liver/metabolism , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Oxidative Stress , Rats , Rats, Wistar , Signal Transduction , Thioacetamide/toxicity , Thymol/pharmacology
7.
Chem Biodivers ; 19(4): e202100960, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35266608

ABSTRACT

Sansevieria species possess antioxidant and hepatoprotective activities. However, the therapeutic potential of Sansevieria suffruticosa N.E.Br. in liver fibrosis was not evaluated yet. Twenty-seven phytoconstituents were tentatively identified in the phytoconstituents profile of Sansevieria suffruticosa N.E.Br. leaves extract (SSLE) using high-performance liquid chromatography coupled with mass spectrometry (HPLC-ESI/MS-MS). Using column chromatography, hesperetin, 4-hydroxybenzoic acid, ginsenoside Rg2, and quinic acid were isolated from SSLE. The hepatoprotective effect of SSLE via the activation of the NRF2 signaling pathway was evaluated using a rat model of thioacetamide-induced liver fibrosis. Five groups of 6 male adult Wistar rats were used. All animals except the normal control were injected with 200 mg/kg of TAA intraperitoneally twice weekly for 6 weeks. SSLE-treated groups were orally administered 200 and 100 mg/kg/day of the extract, two weeks before the liver fibrosis induction and were continued concomitantly with TAA injection. A reference group received 100 mg/kg b.wt of silymarin orally. SSLE treated groups exhibited a marked reduction in serum alanine transaminase (ALT), aspartate transaminase (AST) and malondialdehyde (MDA) levels compared with the TAA group. The levels of reduced glutathione (GSH) content and hepatic mRNA levels of Nrf2 and HO-1 were significantly increased. Histological findings further confirmed the protective role of SSLE against TAA. In conclusion, the aforementioned results indicated that the hepatoprotective mechanism of SSLE was exerted via activating the Nrf2 pathway to counteract oxidative stress.


Subject(s)
NF-E2-Related Factor 2 , Sansevieria , Animals , Antioxidants/analysis , Female , Liver , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Rats , Rats, Wistar , Sansevieria/metabolism , Signal Transduction
8.
PLoS One ; 16(12): e0260130, 2021.
Article in English | MEDLINE | ID: mdl-34965258

ABSTRACT

The objective of the current study is to investigate the effect of rice bran oil (RBO) on hepatic fibrosis as a characteristic response to persistent liver injuries. Rats were randomly allocated into five groups: the negative control group, thioacetamide (TAA) group (thioacetamide 100 mg/kg thrice weekly for two successive weeks, ip), RBO 0.2 and 0.4 groups (RBO 0.2mL and 0.4 mL/rat/day, po) and standard group (silymarin 100 mg/kg/day, po) for two weeks after TAA injection. Blood and liver tissue samples were collected for biochemical, molecular, and histological analyses. Liver functions, oxidative stress, inflammation, liver fibrosis markers were assessed. The obtained results showed that RBO reduced TAA-induced liver fibrosis and suppressed the extracellular matrix formation. Compared to the positive control group, RBO dramatically reduced total bilirubin, AST, and ALT blood levels. Furthermore, RBO reduced MDA and increased GSH contents in the liver. Simultaneously RBO downregulated the NF-κß signaling pathway, which in turn inhibited the expression of some inflammatory mediators, including Cox-2, IL-1ß, and TNF-α. RBO attenuated liver fibrosis by suppressing the biological effects of TGF-ß1, α-SMA, collagen I, hydroxyproline, CTGF, and focal adhesion kinase (FAK). RBO reduced liver fibrosis by inhibiting hepatic stellate cell activation and modulating the interplay among the TGF-ß1 and FAK signal transduction. The greater dosage of 0.4 mL/kg has a more substantial impact. Hence, this investigation presents RBO as a promising antifibrotic agent in the TAA model through inhibition of TGF-ß1 /FAK/α-SMA.


Subject(s)
Actins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Rice Bran Oil/therapeutic use , Transforming Growth Factor beta1/metabolism , Albumins/metabolism , Animals , Becaplermin/metabolism , Biomarkers/metabolism , Collagen Type I/metabolism , Connective Tissue Growth Factor/metabolism , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Gas Chromatography-Mass Spectrometry , Globulins/metabolism , Glutathione/metabolism , Hydroxyproline/metabolism , Inflammation Mediators/metabolism , Liver/drug effects , Liver/enzymology , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/chemically induced , Male , Malondialdehyde/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Rice Bran Oil/pharmacology , Signal Transduction/drug effects , Thioacetamide , Transaminases/blood , Transaminases/metabolism
9.
Biology (Basel) ; 10(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34440028

ABSTRACT

Several members of the genus Artemisia are used in both Western and African traditional medicine for the control of diabetes. A considerable number of diabetic patients switch to using oral antidiabetic drugs in combination with certain herbs instead of using oral antidiabetic drugs alone. This study examined the effect of Artemisia judaica extract (AJE) on the antidiabetic activity of glyburide (GLB) in streptozotocin (STZ)-induced diabetes. Forty-two male Wistar rats were divided into seven equal groups. Normal rats of the first group were treated with the vehicle. The diabetic rats in the second-fifth groups received vehicle, GLB (5 mg/kg), AJE low dose (250 mg/kg), and AJE high dose (500 mg/kg), respectively. Groups sixth-seventh were treated with combinations of GLB plus the lower dose of AJE and GLB plus the higher dose of AJE, respectively. All administrations were done orally for eight weeks. Fasting blood glucose (FBG) and insulin levels, glycated hemoglobin (HbA1c) percentage, serum lipid profile, and biomarkers of oxidative stress were estimated. The histopathological examination of the pancreas and the immunohistochemical analysis of anti-insulin, anti-glucagon, and anti-somatostatin protein expressions were also performed. The analysis of the hepatic mRNA expression of PPAR-α and Nrf2 genes were performed using quantitative RT-PCR. All treatments significantly lowered FBG levels when compared with the STZ-control group with the highest percentage reduction exhibited by the GLB plus AJE high dose combination. This combination highly improved insulin levels, HbA1c, and lipid profile in blood of diabetic rats compared to GLB monotherapy. In addition, all medicaments restored insulin content in the ß-cells and diminished the levels of glucagon and somatostatin of the α- and δ-endocrine cells in the pancreatic islets. Furthermore, the GLB plus AJE high dose combination was the most successful in restoring PPAR-α and Nrf2 mRNA expression in the liver. In conclusion, these data indicate that the GLB plus AJE high dose combination gives greater glycemic improvement in male Wistar rats than GLB monotherapy.

10.
Environ Sci Pollut Res Int ; 28(38): 53249-53266, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34024031

ABSTRACT

Acrylamide (ACR) has been previously associated with male sexual dysfunction and infertility. Eruca sativa (L.) (arugula or rocket) have been widely used in traditional remedies in Mediterranean region and western Asia and was known for its strong aphrodisiac effect since Roman times. The current study was designed to investigate LC/MS analysis of total ethanol extract Eruca sativa (L.) and the efficiency and mechanism of action of Eruca sativa seed extract (ESS) in reducing hypogonadism induced by acrylamide in male rats. Male Wistar rats were divided into 6 groups (n = 7): control group, Eruca sativa seed extract (ESS) at doses of 100 and 200 mg\kg, acrylamide (ACR), ACR + ESS 100 mg/kg, and ACR + ESS 200 mg/kg. The animals received ACR at a dose of 10 mg/kg b.wt for 60 days. Sperm indices, testicular oxidative stress, testosterone hormone, and testicular histopathology and immunohistochemistry of PCNA and caspase-3 were investigated. Moreover, the expression level of testicular B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) genes was evaluated. In respect to the LC/MS of total ethanol extract Eruca sativa (L.) seed revealed tentative identification of 39 compounds, which belongs to different classes as sulphur-containing compounds, flavonoids, phenolic acid, and fatty acids. Administration of ESS extract (100, 200 mg/kg) improved semen quality, diminished lipid peroxidation, enhanced testicular antioxidant enzyme, restored serum testosterone level, and reduced testicular degeneration and Leydig cell death in the rats intoxicated with ACR. However, the effects of ESS at the dose of 200 mg/kg were similar to that of control group. Furthermore, ESS treatment significantly induced anti-apoptotic effect indicated by elevation of both Bcl-2 and Bax expressions. Nutriceutics of ESS extract protects testis against ACR-induced testicular toxicity via normalizing testicular steroidogenesis, keeping Leydig cells, and improving oxidative stress status.


Subject(s)
Acrylamide , Semen Analysis , Acrylamide/metabolism , Acrylamide/toxicity , Animals , Antioxidants/metabolism , Apoptosis , Male , Oxidative Stress , Plant Extracts/metabolism , Rats , Rats, Wistar , Testis/metabolism , bcl-2-Associated X Protein/metabolism
11.
BMC Complement Med Ther ; 21(1): 122, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33853605

ABSTRACT

BACKGROUND: Acrylamide (ACR) is a widespread industrial and food contaminant that garnered considerable attention for its carcinogenic, neurotoxic, and reproductive toxic effects. The antioxidant effects of Portulaca oleracea seeds extract (POS) and its fertility-enhancing effects were inspiring to evaluate the protective potential and pinpoint the mechanisms and molecular targets of the UPLC-MS fingerprinted POS extract on ACR-induced testicular toxicity in rats. METHODS: Male Wistar rats were divided into 6 equal groups of negative control, ACR model (10 mg/kg b.wt.), POS at doses of (200 and 400 mg/kg b.wt.) and POS-treated ACR groups. All treatments were given by oral dosing every day for 60 days. RESULTS: Administration of POS extract reversed the ACR-induced epididymides weight loss with improved semen quality and count, ameliorated the ACR-decreased testicular lesion scoring, testicular oxidative stress, testicular degeneration, Leydig cell apoptosis and the dysregulated PCNA and Caspase-3 expression in a dose-dependent manner. It upregulated the declined level of serum testosterone and the expression of steroidogenic genes such as CYP11A1 and 17ß3-HSD with an obvious histologic improvement of the testes with re-establishment of the normal spermatogenic series, Sertoli and Leydig cells. CONCLUSIONS: The supplementation with POS extract may provide a potential protective effect for ACR-induced testicular dysfunction which is mediated by its antioxidant, antiapoptotic and steroidogenic modulatory effects.


Subject(s)
Plant Extracts/pharmacology , Portulaca , Spermatogenesis/drug effects , Acrylamide , Animals , Male , Oxidative Stress/drug effects , Phytotherapy , Rats , Rats, Wistar , Seeds
12.
Neurochem Res ; 46(4): 819-842, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33439429

ABSTRACT

AIM: Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.


Subject(s)
Acrylamide/toxicity , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Plant Extracts/therapeutic use , Portulaca/chemistry , Seeds/chemistry , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression/drug effects , Male , Metabolomics , Neuroprotective Agents/chemistry , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Plant Extracts/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Signal Transduction/drug effects
13.
Molecules ; 25(22)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187275

ABSTRACT

More than 90% of diabetic patients suffer from sexual dysfunction, including diminished sperm count, sperm motility, and sperm viability, and low testosterone levels. The effects of Momordica charantia (MC) were studied by estimating the blood levels of insulin, glucose, glycosylated hemoglobin (HbA1c), testosterone (TST), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in diabetic rats treated with 250 and 500 mg/kg b.w. of the total extract. Testicular antioxidants, epididymal sperm characteristics, testicular histopathology, and lesion scoring were also investigated. Testicular mRNA expression of apoptosis-related markers such as antiapoptotic B-cell lymphoma-2 (Bcl-2) and proapoptotic Bcl-2-associated X protein (Bax) were evaluated by real-time PCR. Furthermore, caspase-3 protein expression was evaluated by immunohistochemistry. MC administration resulted in a significant reduction in blood glucose and HbA1c and marked elevation of serum levels of insulin, TST, and gonadotropins in diabetic rats. It induced a significant recovery of testicular antioxidant enzymes, improved histopathological changes of the testes, and decreased spermatogenic and Sertoli cell apoptosis. MC effectively inhibited testicular apoptosis, as evidenced by upregulation of Bcl-2 and downregulation of Bax and caspase-3. Moreover, reduction in apoptotic potential in MC-treated groups was confirmed by reduction in the Bax/Bcl-2 mRNA expression ratio.


Subject(s)
Diabetes Complications/drug therapy , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Momordica charantia/chemistry , Plant Extracts/pharmacology , Spermatogenesis/drug effects , Animals , Apoptosis , Caspase 3/metabolism , Chromatography, Liquid , Diabetes Mellitus, Experimental/metabolism , Fertility , Follicle Stimulating Hormone/metabolism , Glycated Hemoglobin/analysis , Immunohistochemistry , Luteinizing Hormone/pharmacology , Male , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Wistar , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spectrometry, Mass, Electrospray Ionization , Sperm Motility/drug effects , Spermatozoa/drug effects , Testis/metabolism , Testosterone/metabolism , bcl-2-Associated X Protein/metabolism
14.
J Nutr Sci ; 9: e2, 2020 01 20.
Article in English | MEDLINE | ID: mdl-32042410

ABSTRACT

Ficus deltoidea var. deltoidea Jack (FD) is a well-known plant used in Malay folklore medicine to lower blood glucose in diabetic patients. For further research of the antihyperglycemic mechanisms, the protein tyrosine phosphatase 1B (PTP1B)-inhibitory effect of FD was analysed both in vitro and in vivo. To optimise a method for FD extraction, water, 50, 70, 80, 90 and 95 % ethanol extracts were prepared and determined for their total phenolic and triterpene contents, and PTP1B-inhibition capacity. Among the tested extracts, 70 % ethanol FD extract showed a significant PTP1B inhibition (92·0 % inhibition at 200 µg/ml) and high phenolic and triterpene contents. A bioassay-guided fractionation of the 70 % ethanol extract led to the isolation of a new triterpene (3ß,11ß-dihydroxyolean-12-en-23-oic acid; F3) along with six known compounds. In vivo, 4 weeks' administration of 70 % ethanol FD extract (125, 250 and 500 mg/kg/d) to streptozotocin-nicotinamide-induced type 2 diabetic rats reversed the abnormal changes of blood glucose, insulin, total Hb, GLUT2, lipid profile, and oxidative stress in liver and pancreas. Moreover, FD reduced the mRNA expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose 6-phosphatase) and restored insulin receptor and GLUT2 encoding gene (Slc2a2) expression. In addition, FD significantly down-regulated the hepatic PTP1B gene expression. These results revealed that FD could potentially improve insulin sensitivity, suppress hepatic glucose output and enhance glucose uptake in type 2 diabetes mellitus through down-regulation of PTP1B. Together, our findings give scientific evidence for the traditional use of FD as an antidiabetic agent.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Down-Regulation/drug effects , Ficus/chemistry , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Animals , Biomarkers/blood , Blood Glucose , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 2/drug therapy , Gene Expression , Glucose-6-Phosphatase , Hydroxybenzoates , Insulin/blood , Insulin Resistance , Liver/metabolism , Male , Oxidative Stress , Plant Extracts/chemistry , Rats , Rats, Wistar , Streptozocin/metabolism
15.
Saudi Pharm J ; 27(8): 1182-1195, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31885478

ABSTRACT

The concomitant use of olive leaves (OL) and glyburide (GLB) is a possible therapy for diabetic patients. However, there is no report about the effect of OL on the antidiabetic effect of GLB till now. In the current study, the possible interaction of olive leaves extract (OLE) with GLB was assessed to determine if there was any pharmacological benefit over GLB alone. Seven groups of male Sprague Dawley rats were used. Normal rats of the 1st group treated with 2 mL/kg of 3% Tween 80 (vehicle). The 2nd-5th groups were diabetic rats received vehicle, GLB (5 mg/kg), OLE low dose and OLE high dose respectively, while the 6th-7th groups administered combinations of GLB plus OLE low dose and GLB plus OLE high dose, respectively. All treatments were administered orally once daily for 8 weeks. The use of GLB+OLE-500 obviously improved fasting blood glucose (FBG), insulin and glycated hemoglobin (HbA1c) in diabetic rats (95.5 ±â€¯5.55 mg/dL, 6.8 ±â€¯0.16 mg/dL and 6.1 ±â€¯0.29%, respectively) compared to those treated with GLB monotherapy (140.0 ±â€¯6.36 mg/dL, 5.4 ±â€¯0.19 mg/dL and 7.0 ±â€¯0.20%, respectively). The lipid profile [triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C)] was significantly improved in diabetic rats exposed to GLB+OLE-500 (35.6 ±â€¯1.51 mg/dL, 48.5 ±â€¯2.74 mg/dL, 25.1 ±â€¯1.21 mg/dL and 17.0 ±â€¯0.82 mg/dL, respectively) in comparison with diabetic group exposed to GLB alone (43.2 ±â€¯2.15 mg/dL, 56.8 ±â€¯2.14 mg/dL, 18.6 ±â€¯0.96 mg/dL, 23.0 ±â€¯1.26 mg/dL, respectively). Additionally, the benefit impacts of GLB+OLE-500GLB+OLE-500 therapy on the antioxidant and lipid peroxidation parameters in the pancreatic tissues of diabetic rats were higher than those of GLB monotherapy. Moreover, GLB plus OLE-500 combination had the greatest effect on restoration of the insulin content of Beta (ß) cells and reduction of the glucagon and somatostatin of Alpha (α) and Delta (δ) endocrine cells in the pancreatic islets among the different treatment. The current study suggests that OL and GLB combination could cause herb-drug interactions through modulation of insulin receptor (INR), glucose transporter 2 (Slc2a2) and peroxisome proliferator-activated receptor α (PPAR-α) genes expression in the liver of diabetic rats.

16.
Saudi Pharm J ; 27(6): 803-816, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31516323

ABSTRACT

Momordica charantia is used in folk medicine to manage diabetes mellitus. In this study, we investigated the possible herb-drug interaction between M. charantia fruit extract (MCFE) and glibenclamide (GLB) in streptozotocin-diabetic rats. Rats were divided into 7 groups. The 1st group received 3% Tween 80. The 2nd-5th groups were diabetic rats received vehicle, GLB (5 mg/kg), MCFE (250 and 500 mg/kg), respectively. The 6th-7th groups administered GLB plus MCFE (250 and 500 mg/kg), respectively. After 8 weeks, fasting blood glucose (FBG), insulin and glycosylated hemoglobin (HbA1c) levels were assessed. Histopathological and immunohistochemical examinations of the pancreases were done. Quantitative RT-PCR was used to analyze hepatic mRNA expression of insulin receptor (INR), glucose transporter 2 (Slc2a2) and peroxisome proliferator-activated receptor α (PPAR-α) genes. All medicaments greatly reduced FBG in diabetic rats when compared with diabetic control group. GLB plus MCFE combination was better than GLB alone in improving levels of insulin and HbA1c. All medicaments restored insulin content of pancreatic ß-cells and reduced glucagon and somatostatin of alpha and delta endocrine cells. Moreover, GLB plus MCFE-500 was the most efficient in restoring INR, Slc2a2 and PPAR-α mRNA expression to their normal levels. In conclusion, MCFE in combination with GLB gives greater glycemic improvement than GLB monotherapy.

17.
Oxid Med Cell Longev ; 2018: 4039753, 2018.
Article in English | MEDLINE | ID: mdl-29849890

ABSTRACT

Essential oils of some aromatic plants provide an effective nonmedicinal option to control liver fibrosis. Mentha piperita L. essential oil (MPEO) have been reported to possess protective effects against hepatotoxicity. However, its effect against liver fibrosis remains unknown. The present study investigated the antifibrogenic potential of MPEO and its underlying mechanisms. Forty male rats divided into 4 groups were used: group 1 served as normal control, group 2 (liver fibrosis) received CCl4 (2.5 mL/kg, IP, twice weekly) for 8 weeks, group 3 concurrently received CCl4 plus MPEO (50 mg/kg, IP, daily, from the 3rd week), and group 4 received MPEO only. MPOE significantly improved the liver injury markers, lipid peroxidation (LPO), antioxidant capacity, CYP2E1 gene expressionand liver histology. Furthermore, MPOE ameliorated liver fibrosis as evidenced by the reduced expression of desmin, α-smooth muscle actin (α-SMA), transforming growth factor-ß1 (TGF-ß1), and SMAD3 proteins. In addition, MPOE counteracted the p53 upregulation induced by CCl4 at both mRNA and protein levels. In conclusion, MPOE could effectively attenuate hepatic fibrosis mainly through improving the redox status, suppressing p53 and subsequently modulating TGF-ß1 and SMAD3 protein expression. These data promote the use of MPOE as a promising approach in antifibrotic therapy.


Subject(s)
Carbon Tetrachloride/adverse effects , Liver Cirrhosis/drug therapy , Mentha piperita/chemistry , Oils, Volatile/therapeutic use , Animals , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Oils, Volatile/pharmacology , Rats
18.
Oxid Med Cell Longev ; 2017: 9460653, 2017.
Article in English | MEDLINE | ID: mdl-29201276

ABSTRACT

This study aimed to evaluate the antihypertensive efficacy of a new combination therapy of Hibiscus sabdariffa and Olea europaea extracts (2 : 1; Roselle-Olive), using N(G)-nitro-L-arginine-methyl ester- (L-NAME-) induced hypertensive model. Rats received L-NAME (50 mg/kg/day, orally) for 4 weeks. Concurrent treatment with Roselle-Olive (500, 250, and 125 mg/kg/day for 4 weeks) resulted in a dose-dependent decrease in both systolic and diastolic blood pressure, reversed the L-NAME-induced suppression in serum nitric oxide (NO), and improved liver and kidney markers, lipid profile, and oxidative status. Furthermore, Roselle-Olive significantly lowered the elevated angiotensin-converting enzyme activity (ACE) and showed a marked genoprotective effect against oxidative DNA damage in hypertensive rats. Roselle-Olive ameliorated kidney and heart lesions and reduced aortic media thickness. Real-time PCR and immunohistochemistry showed an enhanced endothelial nitric oxide synthase (eNOS) gene and protein expression in both heart and kidney of Roselle-Olive-treated rats. To conclude, our data revealed that Roselle-Olive is an effective combination in which H. sabdariffa and O. europaea synergistically act to control hypertension. These effects are likely to be mediated by antioxidant and genoprotective actions, ACE inhibition, and eNOS upregulation by Roselle-Olive constituents. These findings provide evidences that Roselle-Olive combination affords efficient antihypertensive effect with a broad end-organ protective influence.


Subject(s)
Antihypertensive Agents/therapeutic use , Hibiscus/chemistry , Hypertension/drug therapy , Olea/chemistry , Plant Extracts/therapeutic use , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , DNA Damage/drug effects , Electrocardiography , Heart/drug effects , Heart/physiology , Hibiscus/metabolism , Hypertension/chemically induced , Hypertension/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipid Metabolism/drug effects , Male , Malondialdehyde/metabolism , NG-Nitroarginine Methyl Ester/toxicity , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Olea/metabolism , Oxidative Stress/drug effects , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
19.
Neurotoxicol Teratol ; 50: 23-31, 2015.
Article in English | MEDLINE | ID: mdl-26013673

ABSTRACT

In the present study, we investigated the protective effect of an aqueous extract of green tea leaves (GTE) against neurotoxicity and oxidative damage induced by deltamethrin (DM) in male rats. Four different groups of rats were used: the 1st group was the vehicle treated control group, the 2nd group received DM (0.6 mg/kg BW), the 3rd group received DM plus GTE, and the 4th received GTE alone (25 mg/kg BW). The brain tissues were collected at the end of the experimental regimen for subsequent investigation. Rats that were given DM had a highly significant elevation in MDA content, nitric oxide concentration, DNA fragmentation and expression level of apoptotic genes, TP53 and COX2. Additionally, a significant reduction in the total antioxidant capacity in the second group was detected. The findings for the 3rd group highlight the efficacy of GTE as a neuro-protectant in DM-induced neurotoxicity through improving the oxidative status and DNA fragmentation as well as suppressing the expression of the TP53 and COX2 genes. In conclusion, GTE, at a concentration of 25mg/kg/day, protected against DM-induced neurotoxicity through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product against DM-induced neurotoxicity.


Subject(s)
Apoptosis/drug effects , Brain/drug effects , Insecticides/toxicity , Nitriles/toxicity , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Pyrethrins/toxicity , Animals , Brain/metabolism , Brain/pathology , DNA Fragmentation/drug effects , Male , Rats , Tea
20.
BMC Complement Altern Med ; 14: 458, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25439240

ABSTRACT

BACKGROUND: The safety of Deltamethrin (DM) has been raised as a point of concern. The current investigation was envisaged to explore the responsiveness of oxidative stress parameters, DNA fragmentation and expression levels of TP53, cycloxygenase 2 (COX2) and cytochrome p4502E1 (CYP2E1) as toxicological endpoint in rats treated with DM. as well as attention was provided to the neuroprotective effect of vitamin E (VE). METHODS: Four different groups of rats were used in this study, group I served as control, group II received DM (0.6 mg/kg BW), group III received both DM plus VE and finally group IV received VE only (200 mg/kg BW). The treatment regimen was extending for one month for all groups and the brain tissues were collected for further analysis. RESULTS: The obtained results showed a highly statistically significant increase in lipid peroxidation (LPO) content, nitric oxide concentration, and DNA fragmentation percentage and expression level of CYP2E1, TP53 and COX2 genes, in addition statistical significant reduction in total antioxidant capacity in DM treated group as compared to control were detected. Oral administration of VE attenuated the neurotoxic effects of DM through improvement of oxidative status, DNA fragmentation percentage and suppressing the expression level of CYP2E1, TP53 and COX2 genes. CONCLUSION: From this study we concluded that VE supplementation has beneficial impacts on DM neurotoxicity in rats through its antioxidant and antiapoptotic properties.


Subject(s)
Antioxidants/therapeutic use , Dietary Supplements , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Nitriles/toxicity , Oxidative Stress/drug effects , Pyrethrins/toxicity , Vitamin E/therapeutic use , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Cyclooxygenase 2/metabolism , Cytochrome P-450 CYP2E1/metabolism , DNA Fragmentation/drug effects , Insecticides/toxicity , Lipid Peroxidation/drug effects , Male , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/metabolism , Oxidation-Reduction , Rats , Tumor Suppressor Protein p53/metabolism , Vitamin E/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL