Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 15(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37447369

ABSTRACT

Suboptimal complementary feeding practices remain highly prevent. This review aims to comprehensively synthesize new emerging evidence on a set of topics related to the selection and consumption of complementary foods. We synthesized evidence related to five key topics focused on nutritional interventions that target the complementary feeding period, based on four systematic reviews that include updated evidence to February 2022. While there have been many studies examining interventions during the complementary feeding period, there is an overall lack of relevant information through which to draw conclusions on the ideal feeding schedule by food type. Similarly, few studies have examined the effects of animal milk versus infant formula for non-breastfed infants (6-11 months), though those that did found a greater risk of anemia among infants who were provided cow's milk. This review highlights a number of interventions that are successful at improving micronutrient status and anthropometry during the complementary feeding period, including fortified blended foods, locally and commercially produced supplementary foods, and small-quantity lipid-based nutrient supplements. Complementary feeding education for caregivers can also be used to improve nutrition outcomes among infants in both food secure and insecure populations.


Subject(s)
Diet , Infant Nutritional Physiological Phenomena , Animals , Child, Preschool , Humans , Infant , Dietary Supplements , Food, Fortified , Infant Formula , Milk
2.
Plants (Basel) ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34451690

ABSTRACT

Abelmoschus esculentus L. Moench (okra) is a commonly consumed vegetable that consists of the seeds and peel component which are rich in polyphenolic compounds. The aim of this study is to utilize pressurized hot water extraction (PHWE) for the extraction of bioactive phytochemicals from different parts of okra. A single step PHWE was performed at various temperatures (60 °C, 80 °C, 100 °C and 120 °C) to determine which extraction temperature exhibits the optimum phytochemical profile, antioxidant and antidiabetic activities. The optimum temperature for PHWE extraction was determined at 80 °C and the biological activities of the different parts of okra (Inner Skin, Outer Skin and Seeds) were characterized using antioxidant (DPPH and ABTS), α-glucosidase and vasoprotective assays. Using PHWE, the different parts of okra displayed distinct phytochemical profiles, which consist of primarily polyphenolic compounds. The okra Seeds were shown to have the most antioxidant capacity and antidiabetic effects compared to other okra parts, likely to be attributed to their higher levels of polyphenolic compounds. Similarly, okra Seeds also reduced vascular inflammation by downregulating TNFα-stimulated VCAM-1 and SELE expression. Furthermore, metabolite profiling by LC/MS also provided evidence of the cytoprotective effect of okra Seeds in endothelial cells. Therefore, the use of PHWE may be an alternative approach for the environmentally friendly extraction and evaluation of plant extracts for functional food applications.

3.
Campbell Syst Rev ; 17(2): e1127, 2021 Jun.
Article in English | MEDLINE | ID: mdl-37051178

ABSTRACT

Background: Almost two billion people who are deficient in vitamins and minerals are women and children in low- and middle-income countries (LMIC). These deficiencies are worsened during pregnancy due to increased energy and nutritional demands, causing adverse outcomes in mother and child. To reduce micronutrient deficiencies, several strategies have been implemented, including diet diversification, large-scale and targeted fortification, staple crop bio-fortification and micronutrient supplementation. Objectives: To evaluate and summarize the available evidence on the effects of micronutrient supplementation during pregnancy in LMIC on maternal, fetal, child health and child development outcomes. This review will assess the impact of single micronutrient supplementation (calcium, vitamin A, iron, vitamin D, iodine, zinc, vitamin B12), iron-folic acid (IFA) supplementation, multiple micronutrient (MMN) supplementation, and lipid-based nutrient supplementation (LNS) during pregnancy. Search Methods: We searched papers published from 1995 to 31 October 2019 (related programmes and good quality studies pre-1995 were limited) in CAB Abstracts, CINAHL, Cochrane Central Register of Controlled Trials, Embase, International Initiative for Impact Evaluations, LILACS, Medline, POPLINE, Web of Science, WHOLIS, ProQuest Dissertations & Theses Global, R4D, WHO International Clinical Trials Registry Platform. Non-indexed grey literature searches were conducted using Google, Google Scholar, and web pages of key international nutrition agencies. Selection Criteria: We included randomized controlled trials (individual and cluster-randomized) and quasi-experimental studies that evaluated micronutrient supplementation in healthy, pregnant women of any age and parity living in a LMIC. LMIC were defined by the World Bank Group at the time of the search for this review. While the aim was to include healthy pregnant women, it is likely that these populations had one or more micronutrient deficiencies at baseline; women were not excluded on this basis. Data Collection and Analysis: Two authors independently assessed studies for inclusion and risk of bias, and conducted data extraction. Data were matched to check for accuracy. Quality of evidence was assessed using the GRADE approach. Main Results: A total of 314 papers across 72 studies (451,723 women) were eligible for inclusion, of which 64 studies (439,649 women) contributed to meta-analyses. Seven studies assessed iron-folic acid (IFA) supplementation versus folic acid; 34 studies assessed MMN vs. IFA; 4 studies assessed LNS vs. MMN; 13 evaluated iron; 13 assessed zinc; 9 evaluated vitamin A; 11 assessed vitamin D; and 6 assessed calcium. Several studies were eligible for inclusion in multiple types of supplementation. IFA compared to folic acid showed a large and significant (48%) reduction in the risk of maternal anaemia (average risk ratio (RR) 0.52, 95% CI 0.41 to 0.66; studies = 5; participants = 15,540; moderate-quality evidence). As well, IFA supplementation demonstrated a smaller but significant, 12% reduction in risk of low birthweight (LBW) babies (average RR 0.88, 95% CI 0.78 to 0.99; studies = 4; participants = 17,257; high-quality evidence). MMN supplementation was defined as any supplement that contained at least 3 micronutrients. Post-hoc analyses were conducted, where possible, comparing the differences in effect of MMN with 4+ components and MMN with 3 or 4 components. When compared to iron with or without FA, MMN supplementation reduced the risk of LBW by 15% (average RR 0.85, 95% CI 0.77 to 0.93; studies = 28; participants = 79,972); this effect was greater in MMN with >4 micronutrients (average RR 0.79, 95% CI 0.71 to 0.88; studies = 19; participants = 68,138 versus average RR 1.01, 95% CI 0.92 to 1.11; studies = 9; participants = 11,834). There was a small and significant reduction in the risk of stillbirths (average RR 0.91; 95% CI 0.86 to 0.98; studies = 22; participants = 96,772) and a small and significant effect on the risk of small-for-gestational age (SGA) (average RR 0.93; 95% CI 0.88 to 0.98; studies = 19; participants = 52,965). For stillbirths and SGA, the effects were greater among those provided MMN with 4+ micronutrients. Children whose mothers had been supplemented with MMN, compared to IFA, demonstrated a 16% reduced risk of diarrhea (average RR 0.84; 95% CI 0.76 to 0.92; studies = 4; participants = 3,142). LNS supplementation, compared to MMN, made no difference to any outcome; however, the evidence is limited. Iron supplementation, when compared to no iron or placebo, showed a large and significant effect on maternal anaemia, a reduction of 47% (average RR 0.53, 95% CI 0.43 to 0.65; studies = 6; participants = 15,737; moderate-quality evidence) and a small and significant effect on LBW (average RR 0.88, 95% CI 0.78 to 0.99; studies = 4; participants = 17,257; high-quality evidence). Zinc and vitamin A supplementation, each both compared to placebo, had no impact on any outcome examined with the exception of potentially improving serum/plasma zinc (mean difference (MD) 0.43 umol/L; 95% CI -0.04 to 0.89; studies = 5; participants = 1,202) and serum/plasma retinol (MD 0.13 umol/L; 95% CI -0.03 to 0.30; studies = 6; participants = 1,654), respectively. When compared to placebo, vitamin D supplementation may have reduced the risk of preterm births (average RR 0.64; 95% CI 0.40 to 1.04; studies = 7; participants = 1,262), though the upper CI just crosses the line of no effect. Similarly, calcium supplementation versus placebo may have improved rates of pre-eclampsia/eclampsia (average RR 0.45; 95% CI 0.19 to 1.06; studies = 4; participants = 9,616), though the upper CI just crosses 1. Authors' Conclusions: The findings suggest that MMN and vitamin supplementation improve maternal and child health outcomes, including maternal anaemia, LBW, preterm birth, SGA, stillbirths, micronutrient deficiencies, and morbidities, including pre-eclampsia/eclampsia and diarrhea among children. MMN supplementation demonstrated a beneficial impact on the most number of outcomes. In addition, MMN with >4 micronutrients appeared to be more impactful than MMN with only 3 or 4 micronutrients included in the tablet. Very few studies conducted longitudinal analysis on longer-term health outcomes for the child, such as anthropometric measures and developmental outcomes; this may be an important area for future research. This review may provide some basis to guide continual discourse around replacing IFA supplementation with MMN along with the use of single micronutrient supplementation programs for specific outcomes.

4.
Nutrients ; 12(2)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075071

ABSTRACT

Almost two billion people are deficient in key vitamins and minerals, mostly women and children in low- and middle-income countries (LMICs). Deficiencies worsen during pregnancy due to increased energy and nutritional demands, causing adverse outcomes in mother and child, but could be mitigated by interventions like micronutrient supplementation. To our knowledge, this is the first systematic review that aimed to compile evidence from both efficacy and effectiveness trials, evaluating different supplementation interventions on maternal, birth, child health, and developmental outcomes. We evaluated randomized controlled trials and quasi-experimental studies published since 1995 in peer-reviewed and grey literature that assessed the effects of calcium, vitamin A, iron, vitamin D, and zinc supplementation compared to placebo/no treatment; iron-folic (IFA) supplementation compared to folic acid only; multiple micronutrient (MMN) supplementation compared to IFA; and lipid-based nutrient supplementation (LNS) compared to MMN supplementation. Seventy-two studies, which collectively involved 314 papers (451,723 women), were included. Meta-analyses showed improvement in several key birth outcomes, such as preterm birth, small-for-gestational age (SGA) and low birthweight with MMN supplementation, compared to IFA. MMN also improved child outcomes, including diarrhea incidence and retinol concentration, which are findings not previously reported. Across all comparisons, micronutrient supplementation had little to no effect on mortality (maternal, neonatal, perinatal, and infant) outcomes, which is consistent with other systematic reviews. IFA supplementation showed notable improvement in maternal anemia and the reduction in low birthweight, whereas LNS supplementation had no apparent effect on outcomes; further research that compares LNS and MMN supplementation could help understand differences with these commodities. For single micronutrient supplementation, improvements were noted in only a few outcomes, mainly pre-eclampsia/eclampsia (calcium), maternal anemia (iron), preterm births (vitamin D), and maternal serum zinc concentration (zinc). These findings highlight that micronutrient-specific supplementation should be tailored to specific groups or needs for maximum benefit. In addition, they further contribute to the ongoing discourse of choosing antenatal MMN over IFA as the standard of care in LMICs.


Subject(s)
Child Development , Dietary Supplements , Income , Maternal Nutritional Physiological Phenomena , Micronutrients/administration & dosage , Minerals/administration & dosage , Poverty Areas , Vitamins/administration & dosage , Anemia/prevention & control , Child , Child, Preschool , Developing Countries , Female , Humans , Infant , Pre-Eclampsia/prevention & control , Pregnancy , Pregnancy Complications/prevention & control , Pregnancy Outcome , Premature Birth/prevention & control , Randomized Controlled Trials as Topic
5.
World Rev Nutr Diet ; 121: 21-30, 2020.
Article in English | MEDLINE | ID: mdl-33502372

ABSTRACT

Over the past decade, public health advocates and policymakers have grappled with the increasing issue of the double burden of malnutrition. Building on the Sustainable Development Goals and the United Nations Decade of Action on Nutrition, strengthening food systems is paramount to addressing hidden hunger, otherwise known as micronutrient deficiencies, and the provision of healthy, sufficient quality and quantity, affordable, safe, and culturally acceptable food. Using the UNICEF Innocenti Framework on Food Systems for Children and Adolescents as guidance, this review identifies four evidence-based food system strategies to drive improvements in micronutrient deficiencies in low- and middle-income countries in the context of school-aged children and adolescents: agriculture, food supply chains, food environments, and social behavioral change communication. With multiple players and drivers in the picture, strong and reliable oversight from national and local governments is required, through accountability, regulation, and sustained commitment to creating policies and proper infrastructure to support healthy food consumption and limit access to unhealthy food items. Moreover, given the complexity of hidden hunger, a holistic systems approach with a "right to food" lens is required to begin addressing and improving the diets and nutrition of children and adolescents. This involves synergistic and collaborative actions from all actors within the food system, as well as interactions with systems that have the ability to deliver nutrition interventions at scale. These systems include health, water and sanitation, education, and social protection. Only through partnerships and collaboration between all drivers, determinants, and key components of the food system, including its interactions with other global systems, will we be able to appropriately address hidden hunger in school-aged children and adolescents.


Subject(s)
Food Supply/methods , Hunger , Malnutrition/prevention & control , Public Health/methods , Adolescent , Child , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL