Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Nat Prod ; 86(10): 2270-2282, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37792632

ABSTRACT

Persea americana Mill. (Lauraceae), commonly known as avocado, is a well-known food because of its nutrition and health benefits. The seeds of avocado are major byproducts, and thus their phytochemicals and bioactivities have been of interest for study. The chemical components of avocado seeds were investigated by using UPLC-qTOF-MS/MS-based molecular networking, resulting in the isolation of seven new oxindole alkaloids (1-7) and two new benzoxazinone alkaloids (8 and 9). The chemical structures of the isolated compounds were identified by the analysis of NMR data in combination with computational approaches, including NMR and ECD calculations. Bioactivities of the isolated compounds toward silent information regulation 2 homologue-1 (SIRT1) in HEK293 cells were assessed. The results showed that compound 1 had the most potent effect on SIRT1 activation with an elevated NAD+/NADH ratio with potential for further investigation as an anti-aging agent.


Subject(s)
Alkaloids , Persea , Humans , Persea/chemistry , Oxindoles/pharmacology , Benzoxazines/analysis , Tandem Mass Spectrometry , Sirtuin 1 , HEK293 Cells , Seeds/chemistry , Alkaloids/pharmacology , Alkaloids/analysis , Plant Extracts/chemistry
2.
Phytochemistry ; 215: 113836, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619899

ABSTRACT

Autophagy is a crucial process for maintaining cellular homeostasis by degrading and recycling unnecessary or damaged cellular components. In the process of exploring autophagy regulators in plants, unique nine oligomeric flavonoids linked by the bonding of C-3 and C-4, consisting of three pairs of biflavonoids, linderanidins A-C [(+)-1/(-)-1, (+)-2/(-)-2, and (+)-3/(-)-3], and three trimeric A-type proanthocyanidins, linderanidins D-F (4-6), were isolated from the roots of Lindera erythrocarpa. The structures and absolute configurations of these compounds were determined using various techniques, such as 1D and 2D NMR, mass spectrometry, X-ray crystallography, and electronic circular dichroism. All isolates were evaluated for their ability to regulate autophagy, and compounds (±)-1-(±)-3, (-)-1-(-)-3, (+)-1-(+)-3 and 4 were found to inhibit autophagy by blocking the fusion process between autophagosome and lysosome in HEK293 cells. This study suggests that unique oligomeric flavonoids possessing a C-3-C-4 linkage derived from the roots of L. erythrocarpa are potent autophagy inhibitors.


Subject(s)
Flavonoids , Lindera , Humans , Flavonoids/chemistry , Lindera/chemistry , HEK293 Cells , Plant Extracts/chemistry , Autophagy , Plant Roots/chemistry
3.
Exp Ther Med ; 26(3): 446, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37614435

ABSTRACT

As a type of contact dermatitis (CD), irritant CD (ICD) is an acute skin inflammation caused by external irritants, such as soap, water and chemicals. Humulus japonicus (HJ) is a herbal medicine widely distributed in Asian countries and has anti-inflammatory, antimicrobial and antioxidant effects. The current study aimed to investigate the anti-dermatitis effect of HJ on ICD and determine the molecular basis of this effect using 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced dermatitis mice models and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Mice were orally administered HJ and luteolin, the major compound in HJ, and topically administered TPA on the right ear to induce dermatitis. Topical application of TPA induced ear redness, oedema and increased infiltration of neutrophils and macrophages, which ameliorated following HJ and luteolin administration. The gene expression levels of inflammatory cell migrating chemokines, chemokine ligand 3 (CCL3) and chemokine (C-X-C motif) ligand 2 (CXCL2), and pro-inflammatory cytokine, IL-1ß, were reduced in the ears of HJ- and luteolin-treated mice. HJ and luteolin also inhibited the gene expression of chemokines, CCL3 and CXCL2, and pro-inflammatory cytokines, IL-1ß, IL-6 and TNF-α, in LPS-stimulated RAW264.7 cells. Moreover, HJ and luteolin decreased the expression levels of two key inflammatory enzymes, cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS), and total and active phosphorylation of NF-κB p65. These results suggest that HJ could have a protective effect against ICD by suppressing inflammatory responses; therefore, HJ is a promising therapeutic strategy for ICD treatment.

4.
Poult Sci ; 102(2): 102315, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36473384

ABSTRACT

Three different medicinal plants that consisted of the formulated mixture (CAVAC-1901) have been traditionally used for distinct medicinal purposes in different areas. Angelica dahurica has been used as an important ingredient of a prescription, Gumiganghwal-tang, for the common cold and influenza. Curcuma longa has been utilized for the treatment of asthma, and jaundice. Pinus densiflora (Korean red pine) has been used to improve memory and brain function for the treatment of vascular. Industrial livestock, which are characterized by dense breeding, are vulnerable to influenza infection, causing severe economic loss and social problems. However, there are no viable alternatives due to the risk of the occurrence of variants. Therefore, the aim of this study was to discover anti-influenza combinations of different medicinal plants with the concept of a multicomponent and multitarget (MCMT) strategy in traditional Chinese medicine (TCM). As part of a continuous project, 3 medicinal plants whose inhibitory activity against influenza A was previously reported at the compound level, and the inhibition of cytopathic effects (CPEs) by these formulated mixtures was evaluated against influenza A virus H1N1. A selected combination with an optimal ratio exhibiting synergistic activity was assessed for its antiviral activity in chickens against the highly pathogenic avian influenza (HPAI) H5N6. The selected combination (CAVAC-1901) showed potent inhibitory effects on the expression of neuraminidase and nucleoprotein, by RT-qPCR, Western blot, and immunofluorescence assays. The antiviral activity was more evident in chickens infected with H5N6. The sample-treated group (50 mg/kg/d) decreased mortality and virus titers in various organs. Our results indirectly suggest synergistic inhibitory activity of the combination of 3 different medicinal plants with different modes of action. Taken together, an optimally formulated mixture (CAVAC-1901) could serve as an effective alternative to current measures to minimize damage caused by HPAIs.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza in Birds , Plants, Medicinal , Animals , Antiviral Agents/pharmacology , Chickens , Plant Breeding
5.
Phytochemistry ; 206: 113521, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36435211

ABSTRACT

Natural guanidines, molecules that contain the guanidine moiety, are structurally unique and often exhibit potent biological activities. A phytochemical investigation of the leaves of Alchornea rugosa (Lour.) Müll.Arg. by MS/MS-based molecular networking revealed eight undescribed guanidine-flavanol conjugates named rugonines A-H. The chemical structures of the isolated compounds were comprehensively elucidated by NMR spectroscopy, HRESIMS, and circular dichroism (CD) analysis. All isolated compounds were tested for autophagosome formation in HEK293 cells stably expressing GFP-LC3. The results revealed that compounds rugonines D-G showed potential autophagy inhibitory activity.


Subject(s)
Catechin , Euphorbiaceae , Humans , Plant Extracts/chemistry , Guanidine/pharmacology , Guanidine/analysis , Catechin/pharmacology , Euphorbiaceae/chemistry , HEK293 Cells , Tandem Mass Spectrometry , Guanidines/pharmacology , Guanidines/analysis , Plant Leaves/chemistry , Autophagy
6.
Biomed Pharmacother ; 145: 112474, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864308

ABSTRACT

Cristacarpin is a novel prenylated pterocarpan that reportedly exhibits broad anti-cancer activity by enhancing endoplasmic reticulum stress. However, whether and how cristacarpin affects in-flammatory processes remain largely unknown. In the present study, the anti-inflammatory effect of cristacarpin on lipopolysaccharide (LPS)-induced inflammation was investigated using zebrafish embryos, RAW 264.7 macrophages, and mouse uveitis models. In the non-toxic concentration range (from 20 to 100 µM), cristacarpin suppressed pro-inflammatory mediators such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while stimulating anti-inflammatory mediators such as IL-4 and IL-10 in LPS-stimulated RAW 264.7 cells and uveitis mouse models. Cristacarpin decreased cell adhesion of macrophages through downregulation of the expression of Ninjurin1 and matrix metalloproteinases. Furthermore, cristacarpin reduced macrophage migration in zebrafish embryos in vivo. Cristacarpin also increased cytosolic levels of inhibitor of nuclear factor-κB and suppressed the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells. Collectively, our results suggest that cristacarpin is a potential therapeutic candidate for developing ocular anti-inflammatory drugs.


Subject(s)
Inflammation Mediators/metabolism , Macrophages/immunology , Pterocarpans/pharmacology , Uveitis , Animals , Anti-Inflammatory Agents/pharmacology , Cell Adhesion Molecules, Neuronal/metabolism , Disease Models, Animal , Interleukins/metabolism , Mice , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nerve Growth Factors/metabolism , Plant Extracts/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Uveitis/drug therapy , Uveitis/metabolism , Zebrafish , Zebrafish Proteins/metabolism
7.
Bioorg Chem ; 117: 105445, 2021 12.
Article in English | MEDLINE | ID: mdl-34717238

ABSTRACT

During an attempt to discover insulin mimetics, thirteen new triterpenoid saponins (1-13), including three phytolaccagenic acids (1, 2, and 12) and ten serjanic acids (3-11 and 13), as aglycones were isolated from a 70% ethanol extract of leaves and stems from Pericampylus glaucus. The chemical structures of compounds 1-13 were determined through spectroscopic data analysis, including NMR, IR, and HRESIMS. All isolated compounds (1-13) were evaluated using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a fluorescent-tagged glucose probe to determine their stimulatory effects on glucose uptake in differentiated 3 T3-L1 adipocyte cells. Consequently, four compounds (4, 7, 11, and 12) exhibited stimulatory effects on glucose uptake.


Subject(s)
Hypoglycemic Agents/pharmacology , Insulin/metabolism , Menispermaceae/chemistry , Plant Extracts/pharmacology , Saponins/pharmacology , Triterpenes/pharmacology , 3T3-L1 Cells , Animals , Dose-Response Relationship, Drug , Glucose/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Mice , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Stems/chemistry , Saponins/chemistry , Saponins/isolation & purification , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification
8.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34577611

ABSTRACT

The accumulation of amyloid beta (Aß) peptides is common in the brains of patients with Alzheimer's disease, who are characterized by neurological cognitive impairment. In the search for materials with inhibitory activity against the accumulation of the Aß peptide, seven undescribed flavanonol glycosides (1-7) and five known compounds (8-12) were isolated from stems of Myrsine seguinii by HPLC-qTOF MS/MS-based molecular networking. Interestingly, this plant has been used as a folk medicine for the treatment of various inflammatory conditions. The chemical structures of the isolated compounds (1-12) were elucidated based on spectroscopic data, including 1D and 2D nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HRESIMS) and electronic circular dichroism (ECD) data. Compounds 2, 6 and 7 showed neuroprotective activity against Aß-induced cytotoxicity in Aß42-transfected HT22 cells.

9.
Mol Med Rep ; 23(6)2021 06.
Article in English | MEDLINE | ID: mdl-33880583

ABSTRACT

Humulus japonicus (HJ) is a traditional herbal medicine that exhibits anti­inflammatory, antimicrobial and anti­tumor effects that is used for the treatment of hypertension, pulmonary disease and leprosy. Recently, it has also been reported that HJ demonstrates neuroprotective properties in animal models of neurodegenerative diseases. The current study hypothesised that the administration of HJ would exhibit therapeutic effects in autism spectrum disorder (ASD), a neurodevelopmental disorder with lifelong consequences. The BTBR T+ Itpr3tf/J mouse model of ASD was used to investigate the anti­autistic like behavioural effects of HJ. Chronic oral administration of the ethanolic extract of HJ significantly increased social interaction, attenuated repetitive grooming behaviour and improved novel­object recognition in BTBR mice. Anti­inflammatory effects of HJ in the brain were analysed using immunohistochemistry and reverse­transcription quantitative PCR analysis. Microglia activation was markedly decreased in the striatum and hippocampus, and pro­inflammatory cytokines, including C­C Motif Chemokine Ligand 2, interleukin (IL)­1ß and IL­6, were significantly reduced in the hippocampus following HJ treatment. Moreover, HJ treatment normalised the phosphorylation levels of: N­methyl­D­aspartate receptor subtype 2B and calcium/calmodulin­dependent protein kinase type II subunit α in the hippocampus of BTBR mice. The results of the present study demonstrated that the administration of HJ may have beneficial potential for ameliorating behavioural deficits and neuroinflammation in ASD.


Subject(s)
Autistic Disorder/drug therapy , Humulus/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Autism Spectrum Disorder/drug therapy , Autistic Disorder/genetics , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Cytokines/metabolism , Disease Models, Animal , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Phosphorylation/drug effects
10.
J Ethnopharmacol ; 268: 113574, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33186700

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: G. pentaphyllum, also known as Jiao-Gu-Lan, has been used traditionally as folk remedies for many diseases, including diabetes mellitus, metabolic syndrome, aging, and neurodegenerative diseases in China and some countries in East and Southeast Asia. It is considered as an "immortality herb" in Guizhou Province, because it was consumed regularly by the elderly native inhabitants. Other species of the same genus Gynostemma such as G. longipes and G. laxum have been used as alternatives to G. pentaphyllum in ethno-medicine in Vietnam and other Asian countries. AIM OF THE REVIEW: The review aims to summarize up-to-date study results on Gynostemma species, including traditional usage, phytochemical profile, pharmacological activities, and toxicological studies, in order to suggest future research orientation and therapeutic applications on acute and chronic diseases. MATERIALS AND METHODS: The relevant literature on the genus Gynostemma was gathered from secondary databases (Web of Science and PubMed), books, and official websites. The latest literature cited in this review was published in February 2020. RESULTS: The genus Gynostemma has been widely used in traditional medicine, mainly for treatment of diabetes, hypertension, obesity, and hepatosteatosis. To date, 328 dammarane-type saponins were isolated and structurally elucidated from Gynostemma species. Crude extracts, saponin-rich fractions (gypenosides), and pure compounds were reported to show a wide range of pharmacological activities in both in vitro and in vivo experiments. The most notable pharmacological effects were anti-cancer, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic, anti-obesity, and anti-inflammatory activities. Toxicological studies were conducted only on G. pentaphyllum, showing that the plant extracts were relatively safe in both acute and long-term toxicity experiments at the given dosage while no toxicological studies were reported for the other species. CONCLUSIONS: The review summarizes current studies on traditional uses, phytochemistry, biological properties, and toxicology of medicinal Gynostemma species. Till now, the majority of publications still focused only on G. pentaphyllum. However, the promising preliminary data of other Gynostemma species indicated the research potential of this genus, both in phytochemical and pharmacological aspects. Furthermore, clinical data are required to evaluate the efficacy and undesired effects of crude extracts, standard saponin fractions, and pure compounds prepared from Gynostemma medicinal plants.


Subject(s)
Ethnopharmacology/methods , Gynostemma , Medicine, Traditional/methods , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Triterpenes/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/therapeutic use , Cardiotonic Agents/chemistry , Cardiotonic Agents/isolation & purification , Cardiotonic Agents/therapeutic use , Humans , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Triterpenes/chemistry , Triterpenes/isolation & purification
11.
J Nat Prod ; 83(12): 3661-3670, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33256407

ABSTRACT

With the advent of senolytic agents capable of selectively removing senescent cells in old tissues, the perception of age-associated diseases has been changing from being an inevitable to a preventable phenomenon of human life. In the search for materials with senolytic activity from natural products, six new flavonostilbenes (1-6), three new phenylethylchromanones (7-9), three new phenylethylchromones (10-12), and four known compounds (13-16) were isolated from the roots of Rhamnoneuron balansae. The chemical structures of these isolated compounds were determined based on the interpretation of spectroscopic data, including 1D and 2D NMR, ECD, and HRMS. The absolute configuration of compound 1 was also determined by a Mosher ester analysis and ECD calculations. Compounds 6-8 were shown to selectively destroy senescent cells, and the promoter activity of p16INK4A, a representative senescence marker, was reduced significantly by compound 6. The present results suggest the potential activity of flavonostilbene and phenylethylchromanone skeletons from R. balansae as new senolytics.


Subject(s)
Cellular Senescence , Malvales/chemistry , Phenols/chemistry , Plant Roots/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Spectrum Analysis/methods
12.
J Nat Prod ; 83(10): 3093-3101, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32965112

ABSTRACT

Using molecular networking-guided isolation, three new galloyl ester triterpenoids (1-3), two new hexahydroxydiphenic acid-conjugated triterpenoids (6 and 7), and four known compounds (4, 5, 8, and 9) were isolated from the fruits and leaves of Castanopsis sieboldii. The chemical structures of 1-3, 6, and 7 were elucidated on the basis of interpreting their NMR, HRESIMS, and ECD spectra. All compounds (1-9) were evaluated for their glucose uptake-stimulating activities in differentiated adipocytes using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose as a fluorescent-tagged glucose probe. Compounds 2 and 9 resulted in a 1.5-fold increase in glucose uptake. Among them, compound 2 from the fruits showed an upregulation of p-AMPK/AMPK ratio in differentiated C2C12 myoblasts to support the mechanism proposed of glucose uptake stimulation.


Subject(s)
Fagaceae/chemistry , Glucose/metabolism , Triterpenes/pharmacology , 3T3 Cells , Adipocytes/drug effects , Animals , Circular Dichroism , Fruit/chemistry , MAP Kinase Signaling System/drug effects , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Myoblasts/drug effects , Myoblasts/metabolism , Plant Extracts , Plant Leaves/chemistry , Spectrometry, Mass, Electrospray Ionization , Stimulation, Chemical , Triterpenes/isolation & purification
13.
Molecules ; 25(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575379

ABSTRACT

A screening of Sudanese medicinal plants for antiprotozoal activities revealed that the chloroform and water fractions of the ethanolic root extract of Haplophyllum tuberculatum exhibited appreciable bioactivity against Leishmania donovani. The antileishmanial activity was tracked by HPLC-based activity profiling, and eight compounds were isolated from the chloroform fraction. These included lignans tetrahydrofuroguaiacin B (1), nectandrin B (2), furoguaiaoxidin (7), and 3,3'-dimethoxy-4,4'-dihydroxylignan-9-ol (10), and four cinnamoylphenethyl amides, namely dihydro-feruloyltyramine (5), (E)-N-feruloyltyramine (6), N,N'-diferuloylputrescine (8), and 7'-ethoxy-feruloyltyramine (9). The water fraction yielded steroid saponins 11-13. Compounds 1, 2, and 5-13 are reported for the first time from Haplophyllum species and the family Rutaceae. The antiprotozoal activity of the compounds plus two stereoisomeric tetrahydrofuran lignans-fragransin B2 (3) and fragransin B1 (4)-was determined against Leishmania donovani amastigotes, Plasmodium falciparum, and Trypanosoma brucei rhodesiense bloodstream forms, along with their cytotoxicity to rat myoblast L6 cells. Nectandrin B (2) exhibited the highest activity against L. donovani (IC50 4.5 µM) and the highest selectivity index (25.5).


Subject(s)
Antimalarials/pharmacology , Leishmania donovani/growth & development , Plasmodium falciparum/growth & development , Rutaceae/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/growth & development , Amides/chemistry , Amides/pharmacology , Animals , Antimalarials/chemistry , Lignans/chemistry , Lignans/pharmacology , Rats , Saponins/chemistry , Saponins/pharmacology , Trypanocidal Agents/chemistry
14.
J Ethnopharmacol ; 259: 112945, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32389854

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. (Umbelliferae family) is an herbaceous, perennial plant native to northern and eastern Asia. The root of A. dahurica has traditionally been used under the name "Bai Zhi" as a medicinal plant for colds, dizziness, ulcers, and rheumatism. Moreover, it is also an important ingredient of various prescriptions, such as Gumiganghwal-Tang, for the common cold and influenza. AIM OF THE STUDY: Even though various biological activities of the root of A. dahurica have been reported along with its chemical components, the detailed mechanism of how it exerts anti-influenza activity at the compound level has not been studied. Therefore, we investigated the anti-influenza properties of furanocoumarins purified by bioactivity-guided isolation. MATERIALS AND METHODS: Bioactivity-guided isolation from a 70% EtOH extract of the root of A. dahurica was performed to produce four active furanocoumarins. The inhibition of cytopathic effects (CPEs) was evaluated to ascertain the antiviral activity of these compounds against influenza A (H1N1 and H9N2) viruses. The most potent compound was subjected to detailed mechanistic studies such as the inhibition of viral protein synthesis, CPE inhibition in different phases of the viral replication cycle, neuraminidase (NA) inhibition, antiapoptotic activity using flow cytometry, and immunofluorescence. RESULTS: The bioactivity-guided isolation produced four active furanocoumarins, isoimperatorin (1), oxypeucedanin (2), oxypeucedanin hydrate (3) and imperatorin (4) from the n-BuOH fraction. Among them, compound 2 (followed by compounds 1, 4 and 3) showed a significant CPE inhibition effect, which was stronger than that of the positive control ribavirin, against both H1N1 and H9N2 with an EC50 (µM) of 5.98 ± 0.71 and 4.52 ± 0.39, respectively. Compound 2 inhibited the synthesis of NA and nucleoprotein (NP) in a dose-dependent manner. In the time course assays, the cytopathic effects of influenza A-infected MDCK cells were reduced by 80-90% when treated with compound 2 for 1 and 2 h after infection and declined drastically 3 h after infection. The level of viral NA and NP production was markedly reduced to less than 20% for both proteins in compound 2 (20 µM)-treated cells compared to untreated cells at 2 h after infection. In the molecular docking analysis, compound 2 showed a stronger binding affinity for the C-terminus of polymerase acidic protein (PAC; -36.28 kcal/mol) than the other two polymerase subunits. Compound 2 also exerted an antiapoptotic effect on virus infected cells and significantly inhibited the mRNA expression of caspase-3 and Bax. CONCLUSION: Our results suggest that compound 2 might exert anti-influenza A activity via the inhibition of the early phase of the viral replication cycle, not direct neutralization of surface proteins, such as hemagglutinin and NA, and abnormal apoptosis induced by virus infection. Taken together, these findings suggest that furanocoumarins predominant in A. dahurica play a pivotal role in its antiviral activity. These findings can also explain the reasons for the ethnopharmacological uses of this plant as an important ingredient in many antiviral prescriptions in traditional Chinese medicine (TCM).


Subject(s)
Angelica , Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Furocoumarins/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H9N2 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Plant Extracts/pharmacology , Angelica/chemistry , Animals , Antiviral Agents/isolation & purification , Apoptosis/drug effects , Cytopathogenic Effect, Viral/drug effects , Dogs , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Furocoumarins/isolation & purification , Host Microbial Interactions , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/growth & development , Influenza A Virus, H9N2 Subtype/metabolism , Madin Darby Canine Kidney Cells , Molecular Docking Simulation , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Plant Extracts/isolation & purification , Plant Roots , Virus Replication/drug effects
15.
Biomolecules ; 10(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32375402

ABSTRACT

Pinus densiflora was screened in an ongoing project to discover anti-influenza candidates from natural products. An extensive phytochemical investigation provided 26 compounds, including two new megastigmane glycosides (1 and 2), 21 diterpenoids (3-23), and three flavonoids (24-26). The chemical structures were elucidated by a series of chemical reactions, including modified Mosher's analysis and various spectroscopic measurements such as LC/MS and 1D- and 2D-NMR. The anti-influenza A activities of all isolates were screened by cytopathic effect (CPE) inhibition assays and neuraminidase (NA) inhibition assays. Ten candidates were selected, and detailed mechanistic studies were performed by various assays, such as Western blot, immunofluorescence, real-time PCR and flow cytometry. Compound 5 exerted its antiviral activity not by direct neutralizing virion surface proteins, such as HA, but by inhibiting the expression of viral mRNA. In contrast, compound 24 showed NA inhibitory activity in a noncompetitive manner with little effect on viral mRNA expression. Interestingly, both compounds 5 and 24 were shown to inhibit nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner. Taken together, these results provide not only the chemical profiling of P. densiflora but also anti-influenza A candidates.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Pinus/chemistry , Plant Extracts/chemistry , Animals , Antiviral Agents/pharmacology , Binding Sites , Dogs , Enzyme Inhibitors/pharmacology , Flavonoids/analysis , Madin Darby Canine Kidney Cells , Mice , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Neuraminidase/metabolism , Plant Extracts/pharmacology , Protein Binding , RAW 264.7 Cells , Terpenes/analysis , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication/drug effects
16.
Sci Rep ; 10(1): 4967, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32188912

ABSTRACT

Aging is associated with increased prevalence of skeletal and cardiac muscle disorders, such as sarcopenia and cardiac infarction. In this study, we constructed a compendium of purified ginsenoside compounds from Panax ginseng C.A. Meyer, which is a traditional Korean medicinal plant used to treat for muscle weakness. Skeletal muscle progenitor cell-based screening identified three compounds that enhance cell viability, of which 20(R)-ginsenoside Rh2 showed the most robust response. 20(R)-ginsenoside Rh2 increased viability in myoblasts and cardiomyocytes, but not fibroblasts or disease-related cells. The cellular mechanism was identified as downregulation of cyclin-dependent kinase inhibitor 1B (p27Kip1) via upregulation of Akt1/PKB phosphorylation at serine 473, with the orientation of the 20 carbon epimer being crucially important for biological activity. In zebrafish and mammalian models, 20(R)-ginsenoside Rh2 enhanced muscle cell proliferation and accelerated recovery from degeneration. Thus, we have identified 20(R)-ginsenoside Rh2 as a p27Kip1 inhibitor that may be developed as a natural therapeutic for muscle degeneration.


Subject(s)
Ginsenosides/pharmacology , Muscle, Skeletal/cytology , Myocardial Infarction/drug therapy , Myocardium/cytology , Panax/chemistry , Saponins/chemistry , Stem Cells/metabolism , Adult , Animals , Cell Survival , Ginsenosides/chemistry , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Regeneration , Zebrafish
17.
Int J Med Sci ; 17(6): 787-798, 2020.
Article in English | MEDLINE | ID: mdl-32218700

ABSTRACT

Obesity is a medical condition in which excess body fat has accumulated to a serious extent. It is a chronic disease that can lead to dyslipidemia, insulin resistance, and type 2 diabetes. In the present study, we investigated the anti-obesity effects of Sicyos angulatus (SA) extract on a high-fat diet (HFD)-induced C57BL/6J obese mice. The mice were divided into vehicle and three SA groups (25, 50, and 100 mg/kg body weight). The mice were fed a HFD with or without SA for 12 weeks. The oral administration of SA reduced body and adipose tissue weight in HFD-fed mice compared to those in the vehicle group (p<0.05). Adipocyte size and inflammation significantly decreased in the SA-administered groups in a dose-dependent manner. In particular, adipocytes larger than 5000 µm2 were remarkably reduced by around 50% in the SA-treated groups (p<0.05). In addition, SA contributes towards reducing insulin resistance (measured as the HOMA-IR index) and glucose intolerance in HFD-induced obese mice (p<0.05; Vehicle 21.5±3.1 vs. SA100 4.7±0.4). These beneficial effects of SA on obesity may be linked to the suppression of lipogenesis and stimulating energy metabolism in white adipose tissue and muscle. In white adipose tissue and muscle, the administration of SA activated AMPK pathway, leading to the inhibition of the development of pathophysiological conditions associated with obesity, including lipogenesis and inflammation. These findings suggest that SA may prevent obesity through inhibiting fat accumulation in HFD-induced obese mice. Therefore, SA is able to exert metabolic benefits in the prevention of obesity and insulin resistance.


Subject(s)
Cucurbitaceae/chemistry , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Plant Extracts/pharmacology , Adipocytes/drug effects , Adipose Tissue, White/drug effects , Animals , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/etiology , Inflammation/pathology , Insulin Resistance/genetics , Lipogenesis/drug effects , Mice , Mice, Obese , Obesity/etiology , Obesity/pathology , Plant Extracts/chemistry
18.
Int J Mol Med ; 45(2): 417-428, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31894253

ABSTRACT

Humulus japonicus (HJ) is a widely used herbal medicine in Asia with anti­oxidative, anti­microbial, and anti­inflammatory effects. We investigated the potential therapeutic effects of HJ in rheumatoid arthritis (RA) using a mouse model of collagen­induced arthritis (CIA) and a lipopolysaccharide­stimulated murine macrophage cell line (RAW 264.7). The CIA mice were administered 300 mg/kg HJ orally starting 3 days prior to second immunization. The clinical and histopathological findings were assessed in the paw of CIA mice. The levels of autoantibodies and inflammatory markers were determined in the plasma and cell culture supernatant, respectively. The expression at mRNA and protein levels was analyzed by reverse transcription quantitative­PCR and western blot analysis, respectively. HJ significantly decreased the gross arthritic scores and paw swelling in CIA mice. Furthermore, synovial inflammation, cartilage destruction, and bone erosion were markedly reduced by HJ. It also decreased the expression of inflammatory enzymes in both the paw of mice and RAW 264.7 cells. Moreover, the expression of genes related to all macrophages and pro­inflammatory M1 macrophage were significantly decreased, whereas the expression of anti­inflammatory M2 macrophage marker was markedly increased in the paw of HJ­treated CIA mice. In addition, HJ suppressed the levels of plasma anti­type II collagen antibody following the decreased expression of T helper type 1 (Th1) and Th2 cell­associated surface markers and cytokines in the paw. HJ also significantly inhibited the expression of IL­6 both in vitro and in vivo, followed by reduced STAT3 phosphorylation and expression in the paw of CIA mice. Finally, the expression of osteoclast­related genes was decreased in the paw of HJ­treated CIA mice. These findings suggest that HJ can play a role in suppressing the development of CIA by overall regulation of articular inflammation. This study should provide new insights into the use of HJ as a therapeutically effective natural product against RA.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Humulus , Plant Extracts/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , Disease Models, Animal , Humulus/chemistry , Inflammation/drug therapy , Inflammation/immunology , Inflammation Mediators/immunology , Male , Mice , Plant Extracts/chemistry , RAW 264.7 Cells
19.
Phytochemistry ; 170: 112181, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31727321

ABSTRACT

Gymnema sylvestre (Retz.) R. Br. ex Schult. has a long history to be used as an antidiabetic herbal medicine. Various varieties of G. sylvestre, have been studied intensively on their 3ß-hydroxy oleanane triterpenoid composition for hypoglycemic effects. It is also well-known that most species belonging to the same genus have similar chemical composition and biological activity. Thus, an extract of the Gymnema latifolium Wall. ex Wight, which showed considerable protein tyrosine phosphatase 1B (PTP1B) inhibitory activity (>70% inhibition at 30 µg/mL), was studied intensively. Extensive chemical investigation on the 70% EtOH of G. latifolium led to the isolation of four previously undescribed oleanane hemiacetal glycosides, gymlatinosides GL1-GL4, three previously undescribed oleanane glycosides, gymlatinosides GL5-GL7, and two known 3ß-hydroxy oleanane analogs. The structures of the previously undescribed compounds were elucidated using diverse spectroscopic methods. The hemiacetal structure of the glycoside portion was further elaborated precisely by HMBC and J resolved proton NMR. Gymlatinosides GL2 and GL3 showed considerable PTP1B inhibitory effect.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycosides/pharmacology , Gymnema/chemistry , Oleanolic Acid/analogs & derivatives , Phytochemicals/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Molecular Structure , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship
20.
J Nat Prod ; 82(12): 3249-3266, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31763839

ABSTRACT

The major class of bioactive metabolites in Gymnema sylvestre, a popular Ayurvedic medicinal plant for the treatment of diabetes mellitus, is oleanane triterpenoids. In this study, a targeted, biosynthesis-inspired approach using UHPLC-qTOF/MS was implemented to elucidate the whole chemical profile of this plant for the standardization of the Vietnamese G. sylvestre variety. The known compounds were first determined to identify the building blocks of the biosynthetic intermediates and the construction rules for synthesizing oleanane triterpenoids in the plant. These blocks were recombined to build a virtual library of all reasonable compounds consistent with the deduced construction rules. Various techniques, including relative mass defect filtering, multiple key ion analysis, mass fragmentation analysis, and comparison with standard references, were applied to determine the presence of these predicted compounds. Conventional isolation and structure elucidation of six of the new compounds were carried out to identify the new building blocks and validate the assignments. Consequently, 119 peaks were quickly assigned to oleanane triterpenoids, and among them, 77 peaks were predicted to be new compounds based on their molecular formulas and mass fragmentation patterns. All the identified metabolites were then classified into different layers to analyze their logical relationships, and a multilayered chemical profile of the oleanane triterpenoids was constructed. This new approach is expected to be practical for characterizing structures of modular secondary metabolites, such as triterpenoid saponins, and for proposing biosynthetic relationships among compounds of the same class of metabolites in medicinal plants.


Subject(s)
Chromatography, High Pressure Liquid/methods , Gymnema sylvestre/metabolism , Oleanolic Acid/analogs & derivatives , Spectrum Analysis/methods , Triterpenes/metabolism , Glycosides/metabolism , Molecular Structure , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL