Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 17(5): 5945-51, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22609785

ABSTRACT

Paulownia coreana has traditionally been used as the medicine and health food in the treatment of cancer and infectious diseases. In the present study, a new antiproliferation agent, isoatriplicolide tiglate (PCAC) was isolated from the chloroform soluble fraction of the leaves of Paulownia coreana. The antiproliferation activities of PCAC plant extract was examined in breast and cervical cancer cell lines in a time-and dose-dependent manners. Our in vitro experiments showed that PCAC suppresses the cell growth and proliferation of cancer cells at a relatively low concentration (< 10 µg/mL) and induces apoptosis at a high concentration (> 50 µg/mL). Western blot analysis showed that concentration higher than 50 µg/mL induces a time-dependent increase in the percentage of apoptotic cells. In this case, PCAC uses both extrinsic and intrinsic pathways for the apoptosis. PCAC treatment decreased the expression of pro-caspase 8, 9, and 3, the main regulators of apoptotic cell death, in MDA-MB-231 cells, accompanied by the activation of caspase 8, 9, and 3. More importantly, PCAC inhibited the in vitro proliferation of six other human breast and cervical cancer cell lines. In conclusion, our data strongly suggest that PCAC acts as an antiproliferation agents particularly against breast and cervical cancers by inducing cell cycle arrest in the S/G2 phase and caspase dependent apoptosis at relatively low (< 10 µg/mL) and high (> 50 µg/mL) concentrations, respectively.


Subject(s)
Ferns/chemistry , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Plant Extracts/chemistry , Sesquiterpenes/chemistry
2.
Food Chem Toxicol ; 50(3-4): 648-52, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22107989

ABSTRACT

Angelica genus (umbelliferae) has traditionally been used as the medicine and health food considered alleviating several used in the treatment of cancer as well as non-cancerous diseases. Angelica purpuraefolia Chung is an endemic species and a folk medicine in Korea. We have previously reported that two natural khellactone isolated from the rhizomes of A. purpuraefolia has significant antiplasmodial activity against Plasmodium falciparum. In the present study, we scientifically evaluated the effect of (+)-4'-decanoyl-cis-khellactone and (+)-3'-decanoyl-cis-khellactone from A. purpuraefolia on cell proliferation and apoptotic cell death. The anti-proliferative and apoptotic effects of (+)-4'-decanoyl-cis-khellactone and (+)-3'-decanoyl-cis-khellactone (10-50 µg/ml) were subjected to in vitro evaluation using four breast (MDA-MB-231, MCF-7, HS578T, and T47D), three cervical (HeLa, SiHa, and C33A) cancer cell lines, and NIH 3T3 normal cells using FACS and western analyses. Our in vitro experiments showed that (+)-4'-decanoyl-cis-khellactone and (+)-3'-decanoyl-cis-khellactone suppress the growth and proliferation of cancer cells at a relatively low concentration (<10 µg/ml) and induce apoptosis at a high concentration (>50 µg/ml). FACS analysis showed that the cell cycle arrest in the S/G2 phase was induced by the treatment with 10 µg/ml of (+)-4'-decanoyl-cis-khellactone and (+)-3'-decanoyl-cis-khellactone in MDA-MB-231 cells. Western blot analysis also showed that concentration higher than 50 µg/ml of (+)-4'-decanoyl-cis-khellactone induced a time-dependent increase in the percentage of apoptotic cells. However, our results showed that (+)-4'-decanoyl-cis-khellactone uses both extrinsic and intrinsic pathways but (+)-3'-decanoyl-cis-khellactone uses only an intrinsic pathway for the apoptosis. More importantly, (+)-4'-decanoyl-cis-khellactone and (+)-3'-decanoyl-cis-khellactone inhibited the in vitro proliferation of six other human breast and cervical cancer cell lines. Our data strongly suggest that (+)-4'-decanoyl-cis-khellactone and (+)-3'-decanoyl-cis-khellactone act as an anti-cancer supplement particularly against breast and cervical cancers by inducing cell cycle arrest in the S/G2 phase and caspase-dependent apoptosis at relatively low and high concentrations, respectively.


Subject(s)
Angelica/chemistry , Cell Proliferation/drug effects , Coumarins/pharmacology , Herbal Medicine , Blotting, Western , Breast Neoplasms/pathology , Cell Cycle , Cell Line, Tumor , Cell Separation , Drug Screening Assays, Antitumor , Female , Flow Cytometry , Humans , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL