Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Neural Circuits ; 15: 659280, 2021.
Article in English | MEDLINE | ID: mdl-34322001

ABSTRACT

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.


Subject(s)
Apoptosis/physiology , Auditory Cortex/physiology , Feedback, Physiological/physiology , Lasers/adverse effects , Neurons/physiology , Thalamus/physiology , Acoustic Stimulation/methods , Animals , Apoptosis/drug effects , Auditory Cortex/drug effects , Auditory Cortex/pathology , Feedback, Physiological/drug effects , GABA-A Receptor Agonists/pharmacology , Gerbillinae , Male , Neural Pathways/drug effects , Neural Pathways/pathology , Neural Pathways/physiology , Neurons/drug effects , Neurons/pathology , Thalamus/drug effects , Thalamus/pathology
2.
Front Neural Circuits ; 15: 786740, 2021.
Article in English | MEDLINE | ID: mdl-35069125

ABSTRACT

The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.


Subject(s)
Auditory Cortex , Acoustic Stimulation , Animals , Callithrix , Geniculate Bodies , Thalamus , Wakefulness
3.
PLoS One ; 15(6): e0233589, 2020.
Article in English | MEDLINE | ID: mdl-32525940

ABSTRACT

Brain function requires the flexible coordination of billions of neurons across multiple scales. This could be achieved by scale-free, critical dynamics balanced at the edge of order and disorder. Criticality has been demonstrated in several, often reduced neurophysiological model systems. In the intact human brain criticality has yet been only verified for the resting state. A more direct link between the concept of criticality and oscillatory brain physiology, which is strongly related to cognition, is yet missing. In the present study we therefore carried out a frequency-specific analysis of criticality in the MEG, recorded while subjects were in a defined cognitive state through mindfulness meditation. In a two-step approach we assessed whether the macroscopic neural avalanche dynamics is scale-free by evaluating the goodness of a power-law fits of cascade size and duration distributions of MEG deflections in different frequency bands. In a second step we determined the closeness of the power-law exponents to a critical value of -1.5. Power-law fitting was evaluated by permutation testing, fitting of alternative distributions, and cascade shape analysis. Criticality was verified by defined relationships of exponents of cascade size and duration distributions. Behavioral relevance of criticality was tested by correlation of indices of criticality with individual scores of the Mindful Attention Awareness Scale. We found that relevant scale-free near-critical dynamics originated only from broad-band high-frequency (> 100 Hz) MEG activity, which has been associated with action potential firing, and therefore links criticality on the macroscopic level of MEG to critical spike avalanches on a microscopic level. Whereas a scale-free dynamics was found under mindfulness meditation and rest, avalanche dynamics shifted towards a critical point during meditation by reduction of neural noise. Together with our finding that during mindfulness meditation avalanches show differences in topography relative to rest, our results show that self-regulated attention as required during meditation can serve as a control parameter of criticality in scale-free brain dynamics.


Subject(s)
Brain/physiology , Magnetoencephalography , Mindfulness , Models, Neurological , Self-Control , Adult , Female , Healthy Volunteers , Humans , Male , Young Adult
4.
Eur J Neurosci ; 50(9): 3445-3453, 2019 11.
Article in English | MEDLINE | ID: mdl-31286598

ABSTRACT

The auditory system comprises some very large axonal terminals like the endbulb and calyx of Held and "giant" corticothalamic synapses. Previously, we described a hitherto unknown population of giant thalamocortical boutons arising from the medial division of the medial geniculate body (MGm) in the Mongolian gerbil, which terminate over a wide cortical range but in a columnar manner particularly in the extragranular layers of the auditory cortex. As a first step towards an understanding of their potential functional role, we here describe their ultrastructure combining anterograde tract-tracing with biocytin and electron microscopy. Quantitative ultrastructural analyses revealed that biocytin-labelled MGm boutons reach much larger sizes than other, non-labelled boutons. Also, mitochondria occupy more space within labelled boutons whereas synapses are of similar size. Labelled boutons are very heterogeneous in size but homogeneous with respect to their ultrastructural characteristics, with asymmetric synapses containing clear, round vesicles and targeting dendritic spines. Functionally, the ultrastructure of the MGm terminals indicates that they form excitatory contacts, which may transmit their information in a rapid, powerful and high-fidelity manner onto strategically advantageous compartments of their cortical target cells.


Subject(s)
Auditory Cortex/ultrastructure , Geniculate Bodies/ultrastructure , Neuroanatomical Tract-Tracing Techniques/methods , Presynaptic Terminals/ultrastructure , Thalamus/ultrastructure , Animals , Gerbillinae , Lysine/analogs & derivatives , Lysine/metabolism , Male , Microscopy, Electron , Neural Pathways/metabolism , Neuronal Tract-Tracers/metabolism
5.
Sci Rep ; 9(1): 20385, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31892726

ABSTRACT

Reward associations during auditory learning induce cortical plasticity in the primary auditory cortex. A prominent source of such influence is the ventral tegmental area (VTA), which conveys a dopaminergic teaching signal to the primary auditory cortex. Yet, it is unknown, how the VTA influences cortical frequency processing and spectral integration. Therefore, we investigated the temporal effects of direct optogenetic stimulation of the VTA onto spectral integration in the auditory cortex on a synaptic circuit level by current-source-density analysis in anesthetized Mongolian gerbils. While auditory lemniscal input predominantly terminates in the granular input layers III/IV, we found that VTA-mediated modulation of spectral processing is relayed by a different circuit, namely enhanced thalamic inputs to the infragranular layers Vb/VIa. Activation of this circuit yields a frequency-specific gain amplification of local sensory input and enhances corticocortical information transfer, especially in supragranular layers I/II. This effects persisted over more than 30 minutes after VTA stimulation. Altogether, we demonstrate that the VTA exhibits a long-lasting influence on sensory cortical processing via infragranular layers transcending the signaling of a mere reward-prediction error. We thereby demonstrate a cellular and circuit substrate for the influence of reinforcement-evaluating brain systems on sensory processing in the auditory cortex.


Subject(s)
Auditory Cortex/physiology , Thalamus/physiology , Ventral Tegmental Area/physiology , Acoustic Stimulation , Animals , Gerbillinae , Male , Neural Pathways/physiology , Neurons/physiology , Optogenetics
6.
Brain Struct Funct ; 223(3): 1165-1190, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29094306

ABSTRACT

The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known. Using tracer injections into primary auditory, somatosensory, and visual cortex within the first postnatal month of life in a rodent model (Mongolian gerbil) we show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear during development. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional single-photon emission computed tomography of regional cerebral blood flow reveals altered stimulus-induced activity and higher functional connectivity specifically between primary areas in deprived animals. Together, we show that intracortical multisensory connections are formed as a consequence of sensory-driven multisensory thalamocortical activity and that spared senses functionally recruit deprived cortical areas by an altered development of sensory thalamocortical and corticocortical connections. The functional-anatomical changes after early sensory deprivation have translational implications for the therapy of developmental hearing loss, blindness, and sensory paralysis and might also underlie developmental synesthesia.


Subject(s)
Brain Mapping , Nerve Net/physiology , Neural Pathways/physiology , Sensation/physiology , Somatosensory Cortex/physiology , Thalamic Nuclei/physiology , Acoustic Stimulation , Age Factors , Animals , Doublecortin Domain Proteins , Female , GAP-43 Protein/metabolism , Gerbillinae , Male , Microtubule-Associated Proteins/metabolism , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Neuropeptides/metabolism , Photic Stimulation , Sensory Deprivation , Somatosensory Cortex/diagnostic imaging , Stilbamidines/metabolism , Technetium Tc 99m Exametazime/pharmacokinetics , Thalamic Nuclei/diagnostic imaging , Tomography, Emission-Computed, Single-Photon
7.
J Neurosci ; 37(25): 6149-6161, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28559384

ABSTRACT

Feedback signals from the primary auditory cortex (A1) can shape the receptive field properties of neurons in the ventral division of the medial geniculate body (MGBv). However, the behavioral significance of corticothalamic modulation is unknown. The aim of this study was to elucidate the role of this descending pathway in the perception of complex sounds. We tested the ability of adult female ferrets to detect the presence of a mistuned harmonic in a complex tone using a positive conditioned go/no-go behavioral paradigm before and after the input from layer VI in A1 to MGBv was bilaterally and selectively eliminated using chromophore-targeted laser photolysis. MGBv neurons were identified by their short latencies and sharp tuning curves. They responded robustly to harmonic complex tones and exhibited an increase in firing rate and temporal pattern changes when one frequency component in the complex tone was mistuned. Injections of fluorescent microbeads conjugated with a light-sensitive chromophore were made in MGBv, and, following retrograde transport to the cortical cell bodies, apoptosis was induced by infrared laser illumination of A1. This resulted in a selective loss of ∼60% of layer VI A1-MGBv neurons. After the lesion, mistuning detection was impaired, as indicated by decreased d' values, a shift of the psychometric curves toward higher mistuning values, and increased thresholds, whereas discrimination performance was unaffected when level cues were also available. Our results suggest that A1-MGBv corticothalamic feedback contributes to the detection of harmonicity, one of the most important grouping cues in the perception of complex sounds.SIGNIFICANCE STATEMENT Perception of a complex auditory scene is based on the ability of the brain to group those sound components that belong to the same source and to segregate them from those belonging to different sources. Because two people talking simultaneously may differ in their voice pitch, perceiving the harmonic structure of sounds is very important for auditory scene analysis. Here we demonstrate mistuning sensitivity in the thalamus and that feedback from the primary auditory cortex is required for the normal ability of ferrets to detect a mistuned harmonic within a complex sound. These results provide novel insight into the function of descending sensory pathways in the brain and suggest that this corticothalamic circuit plays an important role in scene analysis.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Feedback, Physiological/physiology , Ferrets/physiology , Thalamus/physiology , Acoustic Stimulation , Animals , Auditory Cortex/cytology , Auditory Cortex/diagnostic imaging , Auditory Threshold/physiology , Behavior, Animal/physiology , Cues , Discrimination, Psychological/physiology , Female , Geniculate Bodies/physiology , Sound , Thalamus/cytology , Thalamus/diagnostic imaging
8.
PLoS One ; 12(1): e0169461, 2017.
Article in English | MEDLINE | ID: mdl-28046062

ABSTRACT

Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI) of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD) analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.


Subject(s)
Acoustic Stimulation , Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Algorithms , Animals , Auditory Pathways/physiology , Auditory Perception/physiology , Brain Mapping , Gerbillinae , Male , Neurons/physiology , Sound , Synaptic Transmission
9.
J Neurosci Methods ; 246: 119-33, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25744059

ABSTRACT

BACKGROUND: The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. NEW METHOD: Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. RESULTS AND COMPARISON WITH EXISTING METHOD: Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. CONCLUSIONS: The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves.


Subject(s)
Action Potentials/physiology , Inferior Colliculi/cytology , Models, Neurological , Neurons/physiology , Stochastic Processes , Acoustic Stimulation , Animals , Auditory Perception/physiology , Computer Simulation , Gerbillinae
10.
Proc Natl Acad Sci U S A ; 111(7): 2800-5, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24550310

ABSTRACT

During brain maturation, the occurrence of the extracellular matrix (ECM) terminates juvenile plasticity by mediating structural stability. Interestingly, enzymatic removal of the ECM restores juvenile forms of plasticity, as for instance demonstrated by topographical reconnectivity in sensory pathways. However, to which degree the mature ECM is a compromise between stability and flexibility in the adult brain impacting synaptic plasticity as a fundamental basis for learning, lifelong memory formation, and higher cognitive functions is largely unknown. In this study, we removed the ECM in the auditory cortex of adult Mongolian gerbils during specific phases of cortex-dependent auditory relearning, which was induced by the contingency reversal of a frequency-modulated tone discrimination, a task requiring high behavioral flexibility. We found that ECM removal promoted a significant increase in relearning performance, without erasing already established-that is, learned-capacities when continuing discrimination training. The cognitive flexibility required for reversal learning of previously acquired behavioral habits, commonly understood to mainly rely on frontostriatal circuits, was enhanced by promoting synaptic plasticity via ECM removal within the sensory cortex. Our findings further suggest experimental modulation of the cortical ECM as a tool to open short-term windows of enhanced activity-dependent reorganization allowing for guided neuroplasticity.


Subject(s)
Auditory Cortex/physiology , Cognition/physiology , Extracellular Matrix/metabolism , Memory, Long-Term/physiology , Neuronal Plasticity/physiology , Reversal Learning/physiology , Acoustic Stimulation , Analysis of Variance , Animals , Discrimination Learning/physiology , Fluorescence , Gerbillinae , Immunohistochemistry , Male
11.
J Comp Neurol ; 522(10): 2397-430, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24435884

ABSTRACT

Knowledge of the anatomical organization of the auditory thalamocortical (TC) system is fundamental for the understanding of auditory information processing in the brain. In the Mongolian gerbil (Meriones unguiculatus), a valuable model species in auditory research, the detailed anatomy of this system has not yet been worked out in detail. Here, we investigated the projections from the three subnuclei of the medial geniculate body (MGB), namely, its ventral (MGv), dorsal (MGd), and medial (MGm) divisions, as well as from several of their subdivisions (MGv: pars lateralis [LV], pars ovoidea [OV], rostral pole [RP]; MGd: deep dorsal nucleus [DD]), to the auditory cortex (AC) by stereotaxic pressure injections and electrophysiologically guided iontophoretic injections of the anterograde tract tracer biocytin. Our data reveal highly specific features of the TC connections regarding their nuclear origin in the subdivisions of the MGB and their termination patterns in the auditory cortical fields and layers. In addition to tonotopically organized projections, primarily of the LV, OV, and DD to the AC, a large number of axons diverge across the tonotopic gradient. These originate mainly from the RP, MGd (proper), and MGm. In particular, neurons of the MGm project in a columnar fashion to several auditory fields, forming small- and medium-sized boutons, and also hitherto unknown giant terminals. The distinctive layer-specific distribution of axonal endings within the AC indicates that each of the TC connectivity systems has a specific function in auditory cortical processing.


Subject(s)
Auditory Cortex/anatomy & histology , Gerbillinae/anatomy & histology , Thalamus/anatomy & histology , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Axons , Gerbillinae/physiology , Lysine/analogs & derivatives , Male , Microelectrodes , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Neurons/cytology , Neurons/physiology , Presynaptic Terminals , Thalamus/physiology
12.
Neuroimage ; 65: 13-22, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23032489

ABSTRACT

Approaching or looming signals are often related to extremely relevant environmental events (e.g. threats or collisions) making these signals critical for survival. However, the neural network underlying multisensory looming processing is not yet fully understood. Using functional magnetic resonance imaging (fMRI) we identified the neural correlates of audiovisual looming processing in humans: audiovisual looming (vs. receding) signals enhance fMRI-responses in low-level visual and auditory areas plus multisensory cortex (superior temporal sulcus; plus parietal and frontal structures). When characterizing the fMRI-response profiles for multisensory looming stimuli, we found significant enhancements relative to the mean and maximum of unisensory responses in looming-sensitive visual and auditory cortex plus STS. Superadditive enhancements were observed in visual cortex. Subject-specific region-of-interest analyses further revealed superadditive response profiles within all sensory-specific looming-sensitive structures plus bilateral STS for audiovisual looming vs. summed unisensory looming conditions. Finally, we observed enhanced connectivity of bilateral STS with low-level visual areas in the context of looming processing. This enhanced coupling of STS with unisensory regions might potentially serve to enhance the salience of unisensory stimulus features and is accompanied by superadditive fMRI-responses. We suggest that this preference in neural signaling for looming stimuli effectively informs animals to avoid potential threats or collisions.


Subject(s)
Auditory Perception/physiology , Brain Mapping , Brain/physiology , Reaction Time/physiology , Visual Perception/physiology , Acoustic Stimulation , Adult , Comprehension/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation , Young Adult
13.
J Neurosci ; 30(33): 11114-27, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-20720119

ABSTRACT

Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.


Subject(s)
Auditory Cortex/physiology , Cerebral Cortex/physiology , Thalamus/physiology , Acoustic Stimulation , Afferent Pathways/drug effects , Afferent Pathways/physiology , Animals , Auditory Cortex/drug effects , Auditory Perception/drug effects , Auditory Perception/physiology , Cerebral Cortex/drug effects , Evoked Potentials, Auditory , Gerbillinae , Male , Microelectrodes , Neural Pathways/drug effects , Neural Pathways/physiology , Thalamus/drug effects , Time Factors
14.
Neuroimage ; 49(1): 303-15, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19682585

ABSTRACT

In neurons the rate of K(+)-uptake increases with increasing activity. K(+)-analogues like the heavy metal ion thallium (Tl(+)) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl(+)-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl(+)-uptake patterns are influenced by regional differences in blood-brain barrier (BBB) K(+)-permeability. We here show that the BBB-related limitations in using Tl(+) for imaging neuronal activity are no longer present when the lipophilic Tl(+) chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl(+)-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl(+)-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K(+)-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl(+)-distribution was essentially the same as after injection of water-soluble Tl(+)-salts, indicating Tl(+)-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl(+)-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl(+)-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.


Subject(s)
Brain Mapping/methods , Brain/cytology , Chelating Agents , Ditiocarb , Neurons/physiology , Radiopharmaceuticals , Acoustic Stimulation , Animals , Autoradiography , Behavior, Animal/drug effects , Cerebral Cortex/physiology , Chelating Agents/administration & dosage , Ditiocarb/administration & dosage , Female , Formaldehyde , GABA Agonists , Gerbillinae , Injections, Intraperitoneal , Injections, Intravenous , Jugular Veins/physiology , Male , Muscimol , Pain Measurement/drug effects , Radiopharmaceuticals/administration & dosage , Rats , Rats, Wistar , Reproducibility of Results
15.
Exp Brain Res ; 198(2-3): 233-44, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19590862

ABSTRACT

The temporal integration of stimuli in different sensory modalities plays a crucial role in multisensory processing. Previous studies using temporal-order judgments to determine the point of subjective simultaneity (PSS) with multisensory stimulation yielded conflicting results on modality-specific delays. While it is known that the relative stimulus intensities of stimuli from different sensory modalities affect their perceived temporal order, we have hypothesized that some of these discrepancies might be explained by a previously overlooked confounding factor, namely the duration of the stimulus. We therefore studied the influence of both factors on the PSS in a spatial-audiovisual temporal-order task. In addition to confirming previous results on the role of stimulus intensity, we report that varying the temporal duration of an audiovisual stimulus pair also affects the perceived temporal order of the auditory and visual stimulus components. Although individual PSS values varied from negative to positive values across participants, we found a systematic shift of PSS values in all participants toward a common attractor value with increasing stimulus duration. This resulted in a stabilization of PSS values with increasing stimulus duration, indicative of a mechanism that compensates individual imbalances between sensory modalities, which might arise from attentional biases toward one modality at short stimulus durations.


Subject(s)
Auditory Perception , Judgment , Visual Perception , Acoustic Stimulation , Adult , Analysis of Variance , Female , Humans , Linear Models , Male , Photic Stimulation , Psychophysics , Time Factors , Young Adult
16.
Brain Res ; 1220: 81-92, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18036577

ABSTRACT

Auditory perception comprises bottom-up as well as top-down processes. While research in the past has revealed many neural correlates of bottom-up processes, less is known about top-down modulation. Memory processes have recently been associated with oscillations in the gamma-band of human EEG (30 Hz and above) which are enhanced when incoming information matches a stored memory template. Therefore, we investigated event-related potentials (ERPs) and gamma-band activity in 17 healthy participants in a Go/NoGo-task. They listened to four frequency-modulated (FM) sounds which varied regarding the frequency range traversed and the direction of frequency modulation. One sound was defined as target and required a button press. The results of ERPs (N1, P2, N2, and P3) were consistent with previous studies. Analysis of evoked gamma-band responses yielded no significant task-dependent modulation, but we observed a stimulus dependency, which was also present in a control experiment: The amplitude of evoked gamma responses showed an inverted U-shape as a function of stimulus frequency. Investigation of total gamma activity revealed functionally relevant responses at high frequencies (90 Hz to 250 Hz), which showed significant modulations by matches with STM: Complete matches led to the strongest enhancements (starting around 100 ms after stimulus onset) and partial matches resulted in intermediate ones. The results support the conclusion that very high frequency oscillations (VHFOs) are markers of active stimulus discrimination in STM matching processes and are attributable to higher cognitive functions.


Subject(s)
Auditory Perception/physiology , Brain Mapping , Discrimination, Psychological/physiology , Electroencephalography , Evoked Potentials, Auditory/physiology , Memory, Short-Term/physiology , Acoustic Stimulation/methods , Adult , Analysis of Variance , Choice Behavior/physiology , Female , Humans , Male , Neuropsychological Tests , Psychoacoustics , Reaction Time/physiology
17.
Hear Res ; 229(1-2): 213-24, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17368987

ABSTRACT

Auditory cortex (AC), like subcortical auditory nuclei, represents properties of auditory stimuli by spatiotemporal activation patterns across neurons. A tacit assumption of AC research has been that the multiplicity of functional maps in primary and secondary areas serves a refined continuation of subcortical stimulus processing, i.e. a parallel orderly analysis of distinct properties of a complex sound. This view, which was mainly derived from exposure to parametric sound variation, may not fully capture the essence of cortical processing. Neocortex, in spite of its parcellation into diverse sensory, motor, associative, and cognitive areas, exhibits a rather stereotyped local architecture. The columnar arrangement of the neocortex and the quantitatively dominant connectivity with numerous other cortical areas are two of its key features. This suggests that cortex has a rather common function which lies beyond those usually leading to the distinction of functional areas. We propose that task-relatedness of the way, how any information can be represented in cortex, is one general consequence of the architecture and corticocortical connectivity. Specifically, this hypothesis predicts different spatiotemporal representations of auditory stimuli when concepts and strategies how these stimuli are analysed do change. We will describe, in an exemplary fashion, cortical patterns of local field potentials in gerbil, of unit spiking activity in monkey, and of fMRI signals in human AC during the execution of different tasks mainly in the realm of category formation of sounds. We demonstrate that the representations reflect context- and memory-related, conceptual and executional aspects of a task and that they can predict the behavioural outcome.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Cognition/physiology , Acoustic Stimulation , Animals , Auditory Cortex/anatomy & histology , Gerbillinae , Haplorhini , Humans , Magnetic Resonance Imaging
18.
Rev Neurosci ; 14(1-2): 35-42, 2003.
Article in English | MEDLINE | ID: mdl-12929916

ABSTRACT

Cortical activity contains both evoked patterns and emergent patterns of stimulus-related activity. Here we compared evoked and emergent patterns in the primary auditory cortex, field AI, of the gerbil by studying the differential effects of diluting spatial information about the patterns on their geometric dissimilarity by randomly removing channels from the recording data. This identified the sets of most relevant channels for the discrimination of stimuli in both types of patterns. In the evoked patterns the sets of most discriminative channels were found to be focally organized at locations corresponding to the thalamically relayed input into the cortical tonotopic map. In the emergent patterns the sets of most discriminative channels were broadly distributed and held no apparent relationship to the tonotopic map. The results indicate the coexistence in the same neuronal tissue of a topographic mapping principle for the evoked activity and a holographic mapping principle for the emergent activity.


Subject(s)
Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Animals , Avoidance Learning , Behavior, Animal , Brain Mapping , Conditioning, Classical , Discrimination Learning/physiology , Electrodes, Implanted , Electrophysiology/methods , Gerbillinae , Male , Random Allocation , Space Perception/physiology , Time Factors
19.
Eur J Neurosci ; 15(6): 1077-84, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11918666

ABSTRACT

The segregation of an individual sound from a mixture of concurrent sounds, the so-called cocktail-party phenomenon, is a fundamental and largely unexplained capability of the auditory system. Speaker recognition involves grouping of the various spectral (frequency) components of an individual's voice and segregating them from other competing voices. The important parameter for grouping may be the periodicity of sound waves because the spectral components of a given voice have one periodicity, viz. fundamental frequency, as their common denominator. To determine the relationship between the representations of spectral content and periodicity in the primary auditory cortex (AI), we used optical recording of intrinsic signals and electrophysiological mapping in Mongolian gerbils (Meriones unguiculatus). We found that periodicity maps as an almost circular gradient superimposed on the linear tonotopic gradient in the low frequency part of AI. This geometry of the periodicity map may imply competitive signal processing in support of the theory of "winner-takes-all".


Subject(s)
Auditory Cortex/physiology , Brain Mapping , Evoked Potentials, Auditory/physiology , Gerbillinae/physiology , Neurons/physiology , Perceptual Masking/physiology , Periodicity , Acoustic Stimulation , Animals , Auditory Cortex/anatomy & histology , Gerbillinae/anatomy & histology , Image Processing, Computer-Assisted , Linear Models , Male , Models, Neurological , Optics and Photonics , Pitch Discrimination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL