Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biomed Pharmacother ; 139: 111636, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33957566

ABSTRACT

This study was designed to reveal the protective effects of dietary supplementation of curcumin against renal cell tumours and oxidative stress induced by renal carcinogen iron nitrilotriacetate (Fe-NTA) in ddY male mice. The results showed that mice treated with a renal carcinogen, Fe-NTA, a 35% renal cell tumour incidence was noticed, whereas renal cell tumour occurrence was elevated to 80% in Fe-NTA promoted and N-diethylnitrosamine (DEN)-initiated mice as compared with saline- treated mice. No incidence of tumours has been observed in DEN-initiated non-promoted mice. Diet complemented with 0.5% and 1.0% curcumin fed prior to, during and after treatment with Fe-NTA in DEN-initiated animals, tumour incidence was reduced dose-dependently to about 45% and 30% respectively. Immunohistochemical studies also revealed the increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in kidney tissue of mice treated with an intraperitoneal injection of Fe-NTA (6.0 mg Fe/kg body weight.). Furthermore, Fe-NTA treatment of mice also resulted in significant elevation of malondialdehyde (MDA), serum urea, and creatinine and decreases renal glutathione. However, the changes in most of these parameters were attenuated dose-dependently by prophylactic treatment of animals with 0.5% and 1% curcumin diet, this may be due to its antioxidative impact of curcumin. These results suggest that intake of curcumin is beneficial for the prevention of renal cell tumours and oxidative stress damage mediated by renal carcinogen, Fe-NTA.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Antioxidants/therapeutic use , Carcinoma, Renal Cell/chemically induced , Carcinoma, Renal Cell/drug therapy , Curcumin/therapeutic use , Kidney Neoplasms/chemically induced , Kidney Neoplasms/drug therapy , Oxidative Stress/drug effects , 8-Hydroxy-2'-Deoxyguanosine , Aldehydes , Animals , Anticarcinogenic Agents/pharmacology , Blood Urea Nitrogen , Carcinogens , Creatinine/blood , Diet , Diethylnitrosamine , Dose-Response Relationship, Drug , Ferric Compounds , Male , Mice , Nitrilotriacetic Acid/analogs & derivatives
2.
Free Radic Res ; 52(9): 1030-1039, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30309285

ABSTRACT

Exposure to asbestos fiber is central to mesothelial carcinogenesis, for which iron overload in or near mesothelial cells is a key pathogenic mechanism. Alternatively, iron chelation therapy with deferasirox or regular phlebotomy was significantly preventive against crocidolite-induced mesothelial carcinogenesis in rats. However, the role of iron transporters during asbestos-induced carcinogenesis remains elusive. Here, we studied the role of divalent metal transporter 1 (DMT1; Slc11a2), which is a Fe(II) transporter, that is present not only on the apical plasma membrane of duodenal cells but also on the lysosomal membrane of every cell, in crocidolite-induced mesothelial carcinogenesis using DMT1 transgenic (DMT1Tg) mice. DMT1Tg mice show mucosal block of iron absorption without cancer susceptibility under normal diet. We unexpectedly found that superoxide production was significantly decreased upon stimulation with crocidolite both in neutrophils and macrophages of DMT1Tg mice, and the macrophage surface revealed higher iron content 1 h after contact with crocidolite. Intraperitoneal injection of 3 mg crocidolite ultimately induced malignant mesothelioma in ∼50% of both wild-type and DMT1Tg mice (23/47 and 14/28, respectively); this effect was marginally (p = 0.069) delayed in DMT1Tg mice, promoting survival. The promotional effect of nitrilotriacetic acid was limited, and the liver showed significantly higher iron content both in DMT1Tg mice and after crocidolite exposure. The results indicate that global DMT1 overexpression causes decreased superoxide generation upon stimulation in inflammatory cells, which presumably delayed the promotional stage of crocidolite-induced mesothelial carcinogenesis. DMT1Tg mice with low-stamina inflammatory cells may be helpful to evaluate the involvement of inflammation in various pathologies.


Subject(s)
Asbestos, Crocidolite/toxicity , Carcinogenesis/genetics , Cation Transport Proteins/genetics , Lung Neoplasms/genetics , Mesothelioma/genetics , Animals , Carcinogenesis/drug effects , Epithelial Cells , Gene Expression Regulation, Neoplastic/drug effects , Humans , Iron , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mesothelioma/chemically induced , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , Mice, Transgenic
3.
J Clin Biochem Nutr ; 61(1): 18-24, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28751805

ABSTRACT

Daily intake of vegetables can reduce the risk of cancer and lifestyle-related diseases. However, supplementary intake of ß-carotene alone has been reported to increase the risk of lung cancer in male cigarette smokers and people who were exposed to asbestos. The mechanism of the antioxidative properties of carotenoids in vivo, especially under oxidative stress conditions, still remains unclear. To investigate the antioxidant properties of dietary compounds, we examined the effects of chemically modified astaxanthin (Ax-C-8) using a rat model of ferric nitrilotriacetate (Fe-NTA)-induced renal oxidative injury. Ax-C-8 demonstrated lethally toxic effects on the rats in a dose-dependent manner. Following supplementation with Ax-C-8 (0.02%, w/w) for 30 days, the rats were euthanized 1, 4 and 24 h after injection of Fe-NTA. After 4 h, Ax-C-8 pretreatment suppressed the elevation of creatinine and blood urea nitrogen and protected the rats from renal tubular necrosis and the formation of 4-hydroxy-2-nonenal-modified proteins. After 24 h, pretreatment with Ax-C-8 maintained the renal antioxidant enzyme levels and renal tubules. Here, we demonstrate the antioxidant effects of Ax-C-8 against Fe-NTA-induced oxidative injury in rats receiving a regular diet. These data suggest that dietary intake of astaxanthin may be useful for the prevention of renal tubular oxidative damage.

4.
Free Radic Biol Med ; 108: 610-626, 2017 07.
Article in English | MEDLINE | ID: mdl-28433662

ABSTRACT

Epidemiological data indicate a constant worldwide increase in cancer mortality, although the age of onset is increasing. Recent accumulation of genomic data on human cancer via next-generation sequencing confirmed that cancer is a disease of genome alteration. In many cancers, the Nrf2 transcription system is activated via mutations either in Nrf2 or Keap1 ubiquitin ligase, leading to persistent activation of the genes with antioxidative functions. Furthermore, deep sequencing of passenger mutations is clarifying responsible cancer causative agent(s) in each case, including aging, APOBEC activation, smoking and UV. Therefore, it is most likely that oxidative stress is the principal initiating factor in carcinogenesis, with the involvement of two essential molecules for life, iron and oxygen. There is evidence based on epidemiological and animal studies that excess iron is a major risk for carcinogenesis, suggesting the importance of ferroptosis-resistance. Microscopic visualization of catalytic Fe(II) has recently become available. Although catalytic Fe(II) is largely present in lysosomes, proliferating cells harbor catalytic Fe(II) also in the cytosol and mitochondria. Oxidative stress catalyzed by Fe(II) is counteracted by thiol systems at different functional levels. Nitric oxide, carbon monoxide and hydrogen (per)sulfide modulate these reactions. Mitochondria generate not only energy but also heme/iron sulfur cluster cofactors and remain mostly dysfunctional in cancer cells, leading to Warburg effects. Cancer cells are under persistent oxidative stress with a delicate balance between catalytic iron and thiols, thereby escaping ferroptosis. Thus, high-dose L-ascorbate and non-thermal plasma as well as glucose/glutamine deprivation may provide additional benefits as cancer therapies over preexisting therapeutics.


Subject(s)
Iron/metabolism , Neoplasms/metabolism , Sulfhydryl Compounds/metabolism , Animals , Ascorbic Acid/metabolism , Cell Death , Humans , Oxidation-Reduction , Oxidative Stress , Signal Transduction
5.
Am J Pathol ; 177(2): 677-85, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20558581

ABSTRACT

Iron is essential for the survival of mammals, but iron overload causes fibrosis and carcinogenesis. Reduced iron absorption and regulated release into circulation in duodenal mucosa constitute two major mechanisms of protection against dietary iron overload; however, their relative contribution remains elusive. To study the significance of the former process, we generated SLC11A2 transgenic mice (TGs) under the control of the chicken beta-actin promoter. TGs were viable and fertile, and displayed no overt abnormalities up to 20 months. No significant difference in iron concentration was observed in major solid organs between TGs and their wild-type littermates, suggesting that increased number of iron transporters does not lead to increased iron absorption. To test the sensitivity to iron overload, TGs and wild-type mice were fed with an iron-rich diet containing 2% ferric citrate. Iron supplementation caused suppression of endogenous duodenal SLC11A2 expression, down-regulation of duodenal ferroportin, and overexpression of hepatic hepcidin, precluding excessive iron uptake both in the TGs and wild-type mice. However, iron-treated TGs revealed increased mortality, resulting from oxidative mucosal damage leading to hemorrhagic erosion throughout the whole intestinal area. These findings suggest that reduced iron release from duodenal cells into circulation plays a role in mitigating excessive iron uptake from the diet and that finely regulated duodenal absorption is essential to protect intestinal mucosa from iron-induced oxidative damage.


Subject(s)
Cation Transport Proteins/metabolism , Duodenum/metabolism , Iron Overload/metabolism , Iron, Dietary/metabolism , Animals , COS Cells , Cation Transport Proteins/genetics , Chlorocebus aethiops , Male , Mice , Mice, Transgenic , Oxidative Stress , Tissue Distribution
6.
Mol Cell Biochem ; 304(1-2): 61-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17487455

ABSTRACT

Probucol is a clinically used cholesterol-lowering drug, with pronounced antioxidant properties. We have reported previously, that dietary supplementation of probucol enhances NAD(P)H:quinone reductase (Iqbal M, Okada S (2003) Pharmacol Toxicol 93:259-263) and inhibits Fe-NTA induced lipid peroxidation and DNA damage in vitro (Iqbal M, Sharma SD, Oakada (2004) Redox Rep 9:167-172). Further to this, in the present study, we evaluated the modulatory effect of probucol on iron nitrilotriacetae (Fe-NTA) dependent renal carcinogenesis, hyperproliferative response and oxidative stress. In Fe-NTA alone treated group, a 20% renal cell tumor incidence was recorded whereas, in N-diethylnitrosamine (DEN)-initiated and Fe-NTA promoted animals, the percentage tumor incidence was increased to 70% as compared with untreated controls. No tumor incidence was recorded in DEN-initiated, nonpromoted group. Diet supplemented with 1.0% probucol fed prior to, during and after Fe-NTA treatment in DEN-initiated animals afforded >65% protection in renal cell tumor incidence. Probucol fed diet pretreatment also resulted a significant and dose dependent inhibition of Fe-NTA induced renal ornithine decarboxylase (ODC) activity. In oxidative stress studies, Fe-NTA alone treatment enhanced lipid peroxidation, accompanied by a decrease in the level of GSH, activities of antioxidants and phase II metabolizing enzymes in kidney concomitant with histolopathological changes. These changes were significantly and dose-dependently alleviated by probucol fed diet. From this data, it can be concluded that probucol can modulates toxic and tumor promoting effects of Fe-NTA and can serve as a potent chemopreventive agent to suppress oxidant induced tissue injury and carcinogenesis, in addition to being a cholesterol lowering and anti-atherogenic drug.


Subject(s)
Cell Proliferation/drug effects , Ferric Compounds/toxicity , Kidney Neoplasms/chemically induced , Nitrilotriacetic Acid/analogs & derivatives , Oxidative Stress/drug effects , Probucol/pharmacology , Animals , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carcinogens/toxicity , Drug Evaluation, Preclinical , Kidney Neoplasms/pathology , Kidney Neoplasms/prevention & control , Male , Mice , Mice, Inbred Strains , Nitrilotriacetic Acid/toxicity , Probucol/therapeutic use
7.
Pharmacol Toxicol ; 92(1): 33-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12710595

ABSTRACT

Dietary antioxidants protect laboratory animals against the induction of tumours by a variety of chemical carcinogens. Among possible mechanism of protection against chemical carcinogenesis could be mediated via-antioxidant-dependent induction of detoxifying enzymes. Curcumin, a yellow pigment from Curcuma longa, is a major component of turmeric and is commonly used as a spice and food colouring material and exhibits antiinflammatory antitumour, and antioxidant properties. In this study we therefore investigated the effect of dietary supplementation of curcumin on the activities of antioxidant and phase II-metabolizing enzymes involved in detoxification, and production of reactive oxygen species were quantified in ddY male mice. Dietary supplementation of curcumin (2%, w/v) to male ddY mice for 30 days significantly increased the activities of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and catalase to 189%, 179%, 189%, and 181% in liver and 143%, 134%, 167% and 115% in kidney respectively as compared with corresponding normal diet fed control (P<0.05-0.001). Parallel to these changes, curcumin feeding to mice also resulted in a considerable enhancement in the activity of phase II-metabolizing enzymes viz. glutathione S-transferase and quinone reductase to 1.7 and 1.8 times in liver and 1.1 and 1.3 times in kidney respectively as compared with corresponding normal diet fed control (P<0.05-0.01). In general, the increase in activities of antioxidant and phase II-metabolizing enzymes was more pronounced in liver as compared to kidney. The induction of such detoxifying enzymes by curcumin suggest the potential value of this compound as protective agent against chemical carcinogenesis and other forms of electrophilic toxicity. The significance of these results can be implicated in relation to cancer chemopreventive effects of curcumin against the induction of tumours in various target organs.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antioxidants/metabolism , Carcinogens/toxicity , Curcumin/pharmacology , Dietary Supplements , Animals , Catalase/metabolism , Glucosephosphate Dehydrogenase/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Kidney/drug effects , Kidney/enzymology , Liver/drug effects , Liver/enzymology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL