Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Complement Med Ther ; 24(1): 79, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326823

ABSTRACT

BACKGROUND: Chemotherapies target the PfEMP-1 and PfPKG proteins in Plasmodium falciparum, the parasite that causes malaria, in an effort to prevent the disease's high fatality rate. This work identified the phytochemical components of Nauclea latifolia roots and docked the chemical compounds against target proteins, and examined the in vivo antiplasmodial effect of the roots on Plasmodium berghei-infected mice. METHODS: Standard protocols were followed for the collection of the plant's roots, cleaning, and drying of the roots, extraction and fraction preparation, assessment of the in vivo antiplasmodial activity, retrieval of the PfEMP-1 and PfPKG proteins, GCMS, ADME, and docking studies, chromatographic techniques were employed to separate the residual fraction's components, and the Swis-ADME program made it possible to estimate the drug's likeness and pharmacokinetic properties. The Auto Dock Vina 4.2 tool was utilized for molecular docking analysis. RESULTS: The residual fraction showed the best therapeutic response when compared favorably to amodiaquine (80.5%) and artesunate (85.1%). It also considerably reduced the number of parasites, with the % growth inhibition of the parasite at 42.8% (D2) and 83.4% (D5). Following purification, 25 compounds were isolated and characterized with GCMS. Based on their low molecular weights, non-permeation of the blood-brain barrier, non-inhibition of metabolizing enzymes, and non-violation of Lipinski's criteria, betulinic and ursolic acids were superior to chloroquine as the best phytochemicals. Hence, they are lead compounds. CONCLUSION: In addition to identifying the bioactive compounds, ADME, and docking data of the lead compounds as candidates for rational drug design processes as observed against Plasmodium falciparum target proteins (PfEMP-1 and PfPKG), which are implicated in the pathogenesis of malaria, the study has validated that the residual fraction of N. latifolia roots has the best antiplasmodial therapeutic index.


Subject(s)
Antimalarials , Malaria , Rubiaceae , Triterpenes , Mice , Animals , Antimalarials/chemistry , Ursolic Acid , Molecular Docking Simulation , Plant Extracts/chemistry , Malaria/drug therapy , Malaria/parasitology , Triterpenes/pharmacology , Plasmodium falciparum , Rubiaceae/chemistry
2.
BMC Complement Med Ther ; 22(1): 192, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35854286

ABSTRACT

BACKGROUND: Staphylococcus aureus has prevailed against the majority of antibiotics currently in clinical use, making it a significant global public health problem. As a safer alternative, bioactive compounds have been explored. Annona muricata has been shown to possess antimicrobial activity. However, there are few reports on the molecular activity of A. muricata bioactive compounds against S. aureus. Thus, this study was aimed at evaluating the antimicrobial activity of its crude extract as well as investigating the potential of its bioactive compounds against the Cap5O capsular polysaccharides (CPS) of S. aureus via molecular docking. METHODS: Collection of plant leaves, preparation of extracts, anti-nutrient analysis, phytochemical screening via crude method and gas chromatography-mass spectrophotometer (GC-MS), isolation and characterization of S. aureus and the antimicrobial activity test were all done using standard protocols. Molecular docking was done using the MCULE online tool with emphasis on docking scores, toxicity, and other properties. RESULTS: Crude screening of the extracts showed the presence of polyphenols, hydroxyanthraquinones, reducing compounds, flavonoids, saponins, glycosides, alkaloids, anthraquinones, phlobatannins and tannins in different concentrations. Anti-nutrient analysis showed the presence of allowable levels of evaluated anti-nutrients. GC-MS revealed a total of twenty-nine (29) bioactive compounds, out of which only 4 (13.80%) docked without toxicity and these were bicyclo[4.1.0]heptan-2-one 6-methyl, trichloromethane, carbonic acid 2-dimethylaminoethyl propyl ester, and 1-methyl-4-phenyl-5-thioxo-1,2,4-triazolidin-3-one on either the NAD-binding or C-terminal substrate binding domain of Cap5O. CONCLUSION: Results obtained show that Cap5O could be a potential drug target for multi-drug resistant S. aureus, however, further studies aimed at evaluating these bioactive compounds individually and in combination are highly needed.


Subject(s)
Annona , Methicillin-Resistant Staphylococcus aureus , Annona/chemistry , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus
3.
Article in English | MEDLINE | ID: mdl-32452325

ABSTRACT

AIM AND OBJECTIVE: Cells and tissues of the body are prone to oxidative damage as a result of an increased level of reactive oxygen species and nitrogen radical beyond the detoxifying ability of the endogenous antioxidant system. This study aimed to evaluate the ameliorative effect of methanolic extracts of Nigella sativa (MENS) against cadmium-induced blood oxidative stress and testicular toxicity in albino rats. MATERIALS AND METHODS: Twenty-five (25) male albino rats, weighing (200 ± 20g), were randomly grouped into five groups (A-E). Group B (Negative Control) received intraperitoneal administration of cadmium chloride (CdCl2, 5 mg/kg) only, group C received CdCl2 and low dose MENS (300 mg/kg, oral), group D received CdCl2 and high dose MENS (600 mg/kg, oral), group E (Positive control) received CdCl2 and Vitamin C (200 mg/kg, oral), for 14 days. No treatment was administered to group A (Normal control). The oxidative state of the blood was assessed by measuring the blood levels or activities of MDA, CAT, GSH and SOD; while testicular injury was assessed by measuring serum testosterone level using ELISA. The testes were harvested for histopathological examination. RESULTS: The results showed that cadmium induced a marked elevation in the level of MDA, and a decrease in SOD, CAT and GSH levels or activities (p<0.05 or p<0.01); but no significant alteration in the serum testosterone level was found (p>0.05); Histopathological studies on the testes showed that cadmium significantly induced testicular injury, which was however ameliorated by the seed extract of N. sativa. CONCLUSION: We conclude that N. sativa seed extract is potentially testiculoprotective and attenuates oxidative stress against harmful chemical toxins such as cadmium.


Subject(s)
Antioxidants/metabolism , Cadmium Chloride/adverse effects , Nigella sativa/chemistry , Oxidants/metabolism , Plant Extracts/chemistry , Protective Agents/chemistry , Seeds/chemistry , Alkaloids/chemistry , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Ascorbic Acid/administration & dosage , Ascorbic Acid/metabolism , Cadmium Chloride/administration & dosage , Dose-Response Relationship, Drug , Drug Discovery , Flavonoids/chemistry , Humans , Male , Models, Animal , Oxidants/blood , Oxidants/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Rats , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL