Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Chin J Nat Med ; 22(2): 178-192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342570

ABSTRACT

Compound Shenhua Tablet, a medicine comprising seven herbs, is employed in treating IgA nephropathy. This study aimed to meticulously analyze its chemical composition. Based on a list of candidate compounds, identified through extensive literature review pertinent to the tablet's herbal components, the composition analysis entailed the systematic identification, characterization, and quantification of the constituents. The analyte-capacity of LC/ESI-MS-based and GC/EI-MS-based assays was evaluated. The identified and characterized constituents were quantified to determine their content levels and were ranked based on the constituents' daily doses. A total of 283 constituents, classified into 12 distinct categories, were identified and characterized in the Compound Shenhua Tablet. These constituents exhibited content levels of 1-10 982 µg·g-1, with daily doses of 0.01-395 µmol·d-1. The predominant constituents, with daily doses of ≥ 10 µmol·d-1, include nine organic acids (citric acid, quinic acid, chlorogenic acid, cryptochlorogenic acid, gallic acid, neochlorogenic acid, isochlorogenic acid C, isochlorogenic acid B, and linoleic acid), five iridoids (specnuezhenide, nuezhenoside G13, nuezhenidic acid, secoxyloganin, and secologanoside), two monoterpene glycosides (paeoniflorin and albiflorin), a sesquiterpenoid (curzerenone), a triterpenoid (oleanolic acid), and a phenylethanoid (salidroside). Additionally, there were 83, 126, and 55 constituents detected in the medicine with daily doses of 1-10, 0.1-1, and 0.01-0.1 µmol·d-1, respectively. The combination of the LC/ESI-MS-based and GC/EI-MS-based assays demonstrated a complementary relationship in their analyte-capacity for detecting the constituents present in the medicine. This comprehensive composition analysis establishes a solid foundation for further pharmacological research on Compound Shenhua Tablet and facilitates the quality evaluation of this complex herbal medicine.


Subject(s)
Drugs, Chinese Herbal , Glomerulonephritis, IGA , Humans , Medicine, Chinese Traditional , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Glomerulonephritis, IGA/drug therapy , Drugs, Chinese Herbal/chemistry , Tablets
2.
J Pharm Anal ; 12(4): 664-682, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36105162

ABSTRACT

XueBiJing is an intravenous five-herb injection used to treat sepsis in China. The study aimed to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS)- or liquid chromatography-ultraviolet (LC-UV)-based assay for quality evaluation of XueBiJing. Assay development involved identifying marker constituents to make the assay therapeutically relevant and building a reliable one-point calibrator for monitoring the various analytes in parallel. Nine marker constituents from the five herbs were selected based on XueBiJing's chemical composition, pharmacokinetics, and pharmacodynamics. A selectivity test (for "similarity of response") was developed to identify and minimize interference by non-target constituents. Then, an intercept test was developed to fulfill "linearity through zero" for each analyte (absolute ratio of intercept to C response, <2%). Using the newly developed assays, we analyzed samples from 33 batches of XueBiJing, manufactured over three years, and found small batch-to-batch variability in contents of the marker constituents (4.1%-14.8%), except for senkyunolide I (26.5%).

3.
Acta Pharmacol Sin ; 43(12): 3080-3095, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36114271

ABSTRACT

Traditional medicine has provided a basis for health care and disease treatment to Chinese people for millennia, and herbal medicines are regulated as drug products in China. Chinese herbal medicines have two features. They normally possess very complex chemical composition. This makes the identification of the constituents that are together responsible for the therapeutic action of an herbal medicine challenging, because how to select compounds from an herbal medicine for pharmacodynamic study has been a big hurdle in such identification efforts. To this end, a multi-compound pharmacokinetic approach was established to identify potentially important compounds (bioavailable at the action loci with significant exposure levels after dosing an herbal medicine) and to characterize their pharmacokinetics and disposition. Another feature of Chinese herbal medicines is their typical use as or in combination therapies. Coadministration of complex natural products and conventional synthetic drugs is prevalent worldwide, even though it remains very controversial. Natural product-drug interactions have raised wide concerns about reduced drug efficacy or safety. However, growing evidence shows that incorporating Chinese herbal medicines into synthetic drug-based therapies delivers benefits in the treatment of many multifactorial diseases. To address this issue, a drug-combination pharmacokinetic approach was established to assess drug-drug interaction potential of herbal medicines and degree of pharmacokinetic compatibility for multi-herb combination and herbal medicine-synthetic drug combination therapies. In this review we describe the methodology, techniques, requirements, and applications of multi-compound and drug-combination pharmacokinetic research on Chinese herbal medicines and to discuss further development for these two types of pharmacokinetic research.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Humans , Drugs, Chinese Herbal/pharmacology , Plants, Medicinal/chemistry , Medicine, Chinese Traditional , Drug Combinations , Drug Interactions
4.
Front Pharmacol ; 13: 911982, 2022.
Article in English | MEDLINE | ID: mdl-35620286

ABSTRACT

Phenolic acids are cardiovascular constituents (originating from the Chinese medicinal herb Salvia miltiorrhiza root/Danshen) of DanHong and many other Danshen-containing injections. Our earlier pharmacokinetic investigation of DanHong suggested that hepatic and/or renal uptake of the Danshen compounds was the crucial steps in their systemic elimination. This investigation was designed to survey the molecular basis underlying hepatobiliary and renal excretion of the Danshen compounds, i.e., protocatechuic acid, tanshinol, rosmarinic acid, salvianolic acid D, salvianolic acid A, lithospermic acid, and salvianolic acid B. A large battery of human hepatic and renal transporters were screened for transporting the Danshen compounds and then characterized for the uptake kinetics and also compared with associated rat transporters. The samples were analyzed by liquid chromatography/mass spectrometry. Because the Danshen phenolic acids are of poor or fairly good membrane permeability, their elimination via the liver or kidneys necessitates transporter-mediated hepatic or renal uptake from blood. Several human transporters were found to mediate hepatic and/or renal uptake of the Danshen compounds in a compound-molecular-mass-related manner. Lithospermic acid and salvianolic acid B (both >500 Da) underwent systemic elimination, initiated by organic anion-transporting polypeptide (OATP)1B1/OATP1B3-mediated hepatic uptake. Rosmarinic acid and salvianolic acids D (350-450 Da) underwent systemic elimination, initiated by OATP1B1/OATP1B3/organic anion transporter (OAT)2-mediated hepatic uptake and by OAT1/OAT2-mediated renal uptake. Protocatechuic acid and tanshinol (both <200 Da) underwent systemic elimination, initiated by OAT1/OAT2-mediated renal uptake and OAT2-mediated hepatic uptake. A similar scenario was observed with the rat orthologs. The investigation findings advance our understanding of the disposition of the Danshen phenolic acids and could facilitate pharmacokinetic research on other Danshen-containing injections.

5.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33931765

ABSTRACT

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacokinetics , Phytochemicals/pharmacokinetics , 11-beta-Hydroxysteroid Dehydrogenase Type 2/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Biological Availability , Biotransformation , Capsules , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/adverse effects , Female , Glycyrrhiza/adverse effects , HEK293 Cells , Humans , Liddle Syndrome/chemically induced , Liddle Syndrome/enzymology , Male , Patient Safety , Phytochemicals/administration & dosage , Phytochemicals/adverse effects , Rats, Sprague-Dawley , Risk Assessment
6.
J Ethnopharmacol ; 253: 112658, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32035876

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Many bioactive constituents of Chinese herbal medicines have poor oral bioavailability. Besides oral administration, herbal medicines in China are also prepared for parenteral administration. Unlike for intravenous route, little is known about the intramuscular pharmacokinetics of herbal compounds. To facilitate rational use of herbal medicine, it is important to better understand such intramuscular pharmacokinetics. AIM OF THE STUDY: Bioactive constituents of XueShuanTong (a lyophilized extract of Panax notoginseng roots, extensively used in treatment of ischemic heart and cerebrovascular diseases) predominantly comprise ginsenosides Rb1 and Rd of 20(S)-protopanaxadiol-type and ginsenosides Rg1, and Re, and notoginsenoside R1 of 20(S)-protopanaxatriol-type; these saponins are poorly absorbed from the gastrointestinal tract. This study aimed to compare intramuscular and intravenous pharmacokinetics of these ginsenosides after dosing XueShuanTong. METHODS: Pharmacokinetics of ginsenosides was assessed in human volunteers receiving an intramuscular injection or 1.5-h intravenous infusion of XueShuanTong, both at 150 mg/person, and the plasma and urine samples were analyzed by liquid chromatography/mass spectrometry. RESULTS: Like after intravenous administration, the unchanged saponins were the major circulating forms after intramuscular administration, while their metabolites were poorly detected. These ginsenosides exhibited intramuscular bioavailability of 100%-112%, relative to the respective intravenous data. Similar to that after intravenous infusion, the 20(S)-protopanaxadiol-type ginsenosides after the intramuscular injection exhibited notably longer terminal half-lives (46-106 h) than the 20(S)-protopanaxatriol-type ginsenosides (1.1-1.4 h). CONCLUSIONS: Intramuscular route might be an effective alternative to intravenous route for XueShuanTong, from the pharmacokinetic perspective.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Ginsenosides/metabolism , Administration, Intravenous , Adult , Drugs, Chinese Herbal/administration & dosage , Freeze Drying , Humans , Injections, Intramuscular , Male , Panax notoginseng , Plant Roots , Young Adult
7.
Acta Pharmacol Sin ; 40(10): 1351-1363, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31358899

ABSTRACT

XueShuanTong, a lyophilized extract of Panax notoginseng roots (Sanqi) for intravenous administration, is extensively used as add-on therapy in the treatment of ischemic heart and cerebrovascular diseases and comprises therapeutically active ginsenosides. Potential for XueShuanTong-drug interactions was determined; the investigation focused on cytochrome P450 (CYP)3A induction and organic anion-transporting polypeptide (OATP)1B inhibition. Ginsenosides considerably bioavailable for drug interactions were identified by dosing XueShuanTong in human subjects and their interaction-related pharmacokinetics were determined. The CYP3A induction potential was determined by repeatedly dosing XueShuanTong for 15 days in human subjects and by treating cryopreserved human hepatocytes with circulating ginsenosides; midazolam served as a probe substrate. Joint inhibition of OATP1B by XueShuanTong ginsenosides was assessed in vitro, and the data were processed using the Chou-Talalay method. Samples were analyzed by liquid chromatography/mass spectrometry. Ginsenosides Rb1, Rd, and Rg1 and notoginsenoside R1 were the major circulating XueShuanTong compounds; their interaction-related pharmacokinetics comprised compound dose-dependent levels of systemic exposure and, for ginsenosides Rb1 and Rd, long terminal half-lives (32‒57 and 58‒307 h, respectively) and low unbound fractions in plasma (0.8%‒2.9% and 0.4%‒3.0%, respectively). Dosing XueShuanTong did not induce CYP3A. Based on the pharmacokinetics and inhibitory potency of the ginsenosides, XueShuanTong was predicted to have high potential for OATP1B3-mediated drug interactions (attributed chiefly to ginsenoside Rb1) suggesting the need for further model-based determination of the interaction potential for XueShuanTong and, if necessary, a clinical drug interaction study. Increased awareness of ginsenosides' pharmacokinetics and XueShuanTong-drug interaction potential will help ensure the safe use of XueShuanTong and coadministered synthetic drugs.


Subject(s)
Cytochrome P-450 CYP3A/biosynthesis , Drugs, Chinese Herbal/pharmacokinetics , Ginsenosides/pharmacokinetics , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Plant Roots/chemistry , Administration, Intravenous , Adult , Chromatography, Liquid , Drug Compounding , Drug Interactions , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Female , Ginsenosides/administration & dosage , Ginsenosides/chemistry , Healthy Volunteers , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver-Specific Organic Anion Transporter 1/metabolism , Male , Mass Spectrometry , Molecular Conformation , Young Adult
8.
Acta Pharmacol Sin ; 40(6): 833-849, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30327544

ABSTRACT

ShenMai, an intravenous injection prepared from steamed Panax ginseng roots (Hongshen) and Ophiopogon japonicus roots (Maidong), is used as an add-on therapy for coronary artery disease and cancer; saponins are its bioactive constituents. Since many saponins inhibit human organic anion-transporting polypeptides (OATP)1B, this investigation determined the inhibition potencies of circulating ShenMai saponins on the transporters and the joint potential of these compounds for ShenMai-drug interaction. Circulating saponins and their pharmacokinetics were characterized in rats receiving a 30-min infusion of ShenMai at 10 mL/kg. Inhibition of human OATP1B1/1B3 and rat Oatp1b2 by the individual saponins was investigated in vitro; the compounds' joint inhibition was also assessed in vitro and the data was processed using the Chou-Talalay method. Plasma protein binding was assessed by equilibrium dialysis. Altogether, 49 saponins in ShenMai were characterized and graded into: 10-100 µmol/day (compound doses from ShenMai; 7 compounds), 1-10 µmol/day (17 compounds), and <1 µmol/day (25 compounds, including Maidong ophiopogonins). After dosing, circulating saponins were protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd, Ra1, Rg3, Ra2, and Ra3, protopanaxatriol-type ginsenosides Rg1, Re, Rg2, and Rf, and ginsenoside Ro. The protopanaxadiol-type ginsenosides exhibited maximum plasma concentrations of 2.1-46.6 µmol/L, plasma unbound fractions of 0.4-1.0% and terminal half-lives of 15.6-28.5 h (ginsenoside Rg3, 1.9 h), while the other ginsenosides exhibited 0.1-7.7 µmol/L, 20.8-99.2%, and 0.2-0.5 h, respectively. The protopanaxadiol-type ginsenosides, ginsenosides without any sugar attachment at C-20 (except ginsenoside Rf), and ginsenoside Ro inhibited OATP1B3 more potently (IC50, 0.2-3.5 µmol/L) than the other ginsenosides (≥22.6 µmol/L). Inhibition of OATP1B1 by ginsenosides was less potent than OATP1B3 inhibition. Ginsenosides Rb1, Rb2, Rc, Rd, Ro, Ra1, Re, and Rg2 likely contribute the major part of OATP1B3-mediated ShenMai-drug interaction potential, in an additive and time-related manner.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Ginsenosides/pharmacokinetics , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Solute Carrier Organic Anion Transporter Family Member 1B3/antagonists & inhibitors , Administration, Intravenous , Animals , Drug Combinations , Drug Interactions , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Ginsenosides/administration & dosage , Ginsenosides/blood , Ginsenosides/metabolism , Humans , Liver-Specific Organic Anion Transporter 1/metabolism , Male , Ophiopogon/chemistry , Panax/chemistry , Protein Binding , Rats, Sprague-Dawley , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
9.
Acta Pharmacol Sin ; 39(12): 1935-1946, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30054600

ABSTRACT

Terpene lactones are a class of bioactive constituents of standardized preparations of Ginkgo biloba leaf extract, extensively used as add-on therapies in patients with ischemic cardiovascular and cerebrovascular diseases. This investigation evaluated human pharmacokinetics of ginkgo terpene lactones and impact of their carboxylation in blood. Human subjects received oral YinXing-TongZhi tablet or intravenous ShuXueNing, two standardized ginkgo preparations. Their plasma protein-binding and platelet-activating factor antagonistic activity were assessed in vitro. Their carboxylation was assessed in phosphate-buffered saline (pH 7.4) and in human plasma. After dosing YinXing-TongZhi tablet, ginkgolides A and B and bilobalide exhibited significantly higher systemic exposure levels than ginkgolides C and J; after dosing ShuXueNing, ginkgolides A, B, C, and J exhibited high exposure levels. The compounds' unbound fractions in plasma were 45-92%. Apparent oral bioavailability of ginkgolides A and B was mostly >100%, while that of ginkgolides C and J was 6-15%. Bilobalide's bioavailability was probably high but lower than that of ginkgolides A/B. Terminal half-lives of ginkgolides A, B, and C (4-7 h) after dosing ShuXueNing were shorter than their respective values (6-13 h) after dosing YinXing-TongZhi tablet. Half-life of bilobalide after dosing the tablet was around 5 h. Terpene lactones were roughly evenly distributed in various body fluids and tissues; glomerular-filtration-based renal excretion was the predominant elimination route for the ginkgolides and a major route for bilobalide. Terpene lactones circulated as trilactones and monocarboxylates. Carboxylation reduced platelet-activating factor antagonistic activity of ginkgolides A, B, and C. Ginkgolide J, bilobalide, and ginkgo flavonoids exhibited no such bioactivity. Collectively, differences in terpene lactones' exposure between the two preparations and influence of their carboxylation in blood should be considered in investigating the relative contributions of terpene lactones to ginkgo preparations' therapeutic effects. The results here will inform rational clinical use of ginkgo preparations.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Ginkgolides/pharmacokinetics , Lactones/pharmacokinetics , Platelet Activating Factor/antagonists & inhibitors , Adult , Animals , Biochemical Phenomena/drug effects , Drugs, Chinese Herbal/chemistry , Female , Ginkgo biloba/chemistry , Ginkgolides/blood , Ginkgolides/chemistry , Ginkgolides/urine , HEK293 Cells , Humans , Lactones/blood , Lactones/chemistry , Lactones/urine , Male , Rabbits , Young Adult
10.
Drug Metab Dispos ; 46(6): 823-834, 2018 06.
Article in English | MEDLINE | ID: mdl-29523601

ABSTRACT

XueBiJing, an injectable five-herb preparation, has been incorporated into routine sepsis care in China. Phthalides, originating from XueBiJing's component herbs Ligusticum chuanxiong rhizomes and Angelica sinensis roots, are believed to contribute to its therapeutic effects due to their presence in the preparation and antisepsis-related properties. This investigation aimed to identify potential therapeutic phthalides that are bioavailable to act on XueBiJing's therapeutic targets and that could serve as pharmacokinetic markers to supplement classic biomarkers for sepsis care. Among 10 phthalides detected in XueBiJing, senkyunolides I and G were the major circulating phthalides in human subjects, but their different pharmacokinetics might influence their contribution to XueBiJing's therapeutic action. Senkyunolide I exhibited a large distribution volume (1.32 l/kg) and was moderately bound in plasma (54% unbound), whereas senkyunolide G exhibited a small distribution volume (0.10 l/kg) and was extensively bound in plasma (3% unbound). Clearance of senkyunolide I from the systemic circulation was governed by UGT2B15-mediated hepatic glucuronidation; the resulting electrophilic glucuronides were conjugated with glutathione in the liver. Senkyunolide G was selectively bound to albumin (99%) in human plasma. To our knowledge, the human pharmacokinetic data of XueBiJing's phthalides are reported here for the first time. Based on this investigation and such investigations of the other component herbs, follow-up pharmacodynamic assessments of bioavailable herbal compounds are planned to elucidate XueBiJing's chemical basis responsible for its therapeutic action. Senkyunolides I and G, having the preceding disposition characteristics that could be detectably altered by septic pathophysiology, could serve as pharmacokinetic markers for sepsis care.


Subject(s)
Benzofurans/pharmacology , Benzofurans/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics , Sepsis/drug therapy , Adolescent , Adult , Angelica sinensis , Animals , Female , Glucuronosyltransferase/metabolism , Humans , Injections/methods , Male , Rats , Rats, Sprague-Dawley , Sepsis/metabolism , Young Adult
11.
J Sep Sci ; 40(7): 1470-1481, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28139096

ABSTRACT

Polyphenols derived from Danshen are responsible for the therapeutic effects of DanHong injection, a two-herb combination of Danshen and Honghua. Whether the pharmacokinetics of Danshen polyphenols is changed by coexisting Honghua constituents remains unknown. A sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed in this study for simultaneous determination of eight Danshen polyphenols (i.e., protocatechuic aldehyde, protocatechuic acid, tanshinol, salvianolic acid D, rosmarinic acid, salvianolic acid A, lithospermic acid, and salvianolic acid B) in rat plasma and applied to a comparative pharmacokinetic study of DanHong injection and Danshen injection. Liquid chromatography conditions, mass spectrometry parameters, and sample preparation were optimized step by step. The calibration curves showed good linearity (r > 0.99) for all the polyphenols. The mean extraction efficiencies ranged from 62.2 to 88.7% with negligible matrix effects. The intrabatch and interbatch precision at all the quality control levels were less than 15% of the nominal concentrations with accuracy of 88.8-114%, except that precision and accuracy at lower limit of quantitation were 3.2-17.3 and 95.7-119%, respectively. Comparative pharmacokinetic study suggested that the coexisting Honghua constituents might have negligible influences on the pharmacokinetics of Danshen polyphenols from DanHong injection. The bioanalytical method could also be applied to pharmacokinetic studies of other Danshen herbal products.


Subject(s)
Blood Chemical Analysis/methods , Drugs, Chinese Herbal/pharmacokinetics , Polyphenols/blood , Salvia miltiorrhiza/chemistry , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/administration & dosage , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
12.
Drug Metab Pharmacokinet ; 31(1): 95-98, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26830081

ABSTRACT

XueBiJing injection, prepared from a five-herb combination, is extensively used as add-on therapy in routine sepsis care in China. Catechols, derived from the component herb Salvia miltiorrhiza roots (Danshen), are probably important because of their reported antiseptic properties. This study was designed to characterize pharmacokinetics of major circulating Danshen catechols in human subjects intravenously receiving the injection at the label doses. A total of 17 Danshen catechols were detected in XueBiJing injection (content level, 0.1-139.3 µmol/L). After dosing, tanshinol and salvianolic acid B exhibited relatively high levels of systemic exposure with mean elimination half-lives of 0.38 and 0.29 h, respectively. The total plasma clearance and apparent volume of distribution at steady state of tanshinol were 1.07 L/h/kg and 0.40 L/kg, respectively, whereas those of salvianolic acid B were 0.43 L/h/kg and 0.13 L/kg, respectively. Protocatechuic acid and five other catechols were also detected in plasma but at low exposure levels. Although protocatechuic aldehyde had the highest content level in the injection, like the remaining eight catechols, it was undetected in plasma. Protocatechuic aldehyde was extensively converted into protocatechuic acid and other metabolites. The information gained here facilitates understanding the roles of Danshen catechols in therapeutic actions of XueBiJing injection.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Catechols/pharmacokinetics , Drugs, Chinese Herbal/administration & dosage , Administration, Intravenous , Adult , China , Female , Herbal Medicine/methods , Humans , Hydroxybenzoates/administration & dosage , Male , Phytotherapy/methods , Plant Extracts/administration & dosage , Salvia miltiorrhiza/chemistry , Young Adult
13.
Acta Pharmacol Sin ; 37(4): 530-44, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26838074

ABSTRACT

AIM: Monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) are believed to be pharmacologically important for the antiseptic herbal injection XueBiJing. This study was designed to characterize the pharmacokinetics and disposition of monoterpene glycosides. METHODS: Systemic exposure to Chishao monoterpene glycosides was assessed in human subjects receiving an intravenous infusion and multiple infusions of XueBiJing injection, followed by assessment of the pharmacokinetics of the major circulating compounds. Supportive rat studies were also performed. Membrane permeability and plasma-protein binding were assessed in vitro. RESULTS: A total of 18 monoterpene glycosides were detected in XueBiJing injection (content levels, 0.001-2.47 mmol/L), and paeoniflorin accounted for 85.5% of the total dose of monoterpene glycosides detected. In human subjects, unchanged paeoniflorin exhibited considerable levels of systemic exposure with elimination half-lives of 1.2-1.3 h; no significant metabolite was detected. Oxypaeoniflorin and albiflorin exhibited low exposure levels, and the remaining minor monoterpene glycosides were negligible or undetected. Glomerular-filtration-based renal excretion was the major elimination pathway of paeoniflorin, which was poorly bound to plasma protein. In rats, the systemic exposure level of paeoniflorin increased proportionally as the dose was increased. Rat lung, heart, and liver exposure levels of paeoniflorin were lower than the plasma level, with the exception of the kidney level, which was 4.3-fold greater than the plasma level; brain penetration was limited by the poor membrane permeability. CONCLUSION: Due to its significant systemic exposure and appropriate pharmacokinetic profile, as well as previously reported antiseptic properties, paeoniflorin is a promising XueBiJing constituent of therapeutic importance.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Glucosides/pharmacokinetics , Glycosides/pharmacokinetics , Monoterpenes/pharmacokinetics , Paeonia/chemistry , Adult , Animals , Blood Proteins/metabolism , Caco-2 Cells , Cell Membrane Permeability , Female , Glucosides/blood , Glucosides/urine , Glycosides/blood , Glycosides/urine , Humans , Male , Monoterpenes/blood , Monoterpenes/urine , Plant Roots/chemistry , Protein Binding , Rats, Sprague-Dawley , Young Adult
14.
Drug Metab Dispos ; 43(5): 669-78, 2015 May.
Article in English | MEDLINE | ID: mdl-25710938

ABSTRACT

Tanshinol has desirable antianginal and pharmacokinetic properties and is a key compound of Salvia miltiorrhiza roots (Danshen). It is extensively cleared by renal excretion. This study was designed to elucidate the mechanism underlying renal tubular secretion of tanshinol and to compare different ways to manipulate systemic exposure to the compound. Cellular uptake of tanshinol was mediated by human organic anion transporter 1 (OAT1) (Km, 121 µM), OAT2 (859 µM), OAT3 (1888 µM), and OAT4 (1880 µM) and rat Oat1 (117 µM), Oat2 (1207 µM), and Oat3 (1498 µM). Other renal transporters (human organic anion-transporting polypeptide 4C1 [OATP4C1], organic cation transporter 2 [OCT2], carnitine/organic cation transporter 1 [OCTN1], multidrug and toxin extrusion protein 1 [MATE1], MATE2-K, multidrug resistance-associated protein 2 [MRP2], MRP4, and breast cancer resistance protein [BCRP], and rat Oct1, Oct2, Octn1, Octn2, Mate1, Mrp2, Mrp4, and Bcrp) showed either ambiguous ability to transport tanshinol or no transport activity. Rats may be a useful model, to investigate the contribution of the renal transporters on the systemic and renal exposure to tanshinol. Probenecid-induced impairment of tubular secretion resulted in a 3- to 5-fold increase in the rat plasma area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of tanshinol. Tanshinol exhibited linear plasma pharmacokinetic properties over a large intravenous dose range (2-200 mg/kg) in rats. The dosage adjustment could result in increases in the plasma AUC0-∞ of tanshinol of about 100-fold. Tanshinol exhibited very little dose-related nephrotoxicity. In summary, renal tubular secretion of tanshinol consists of uptake from blood, primarily by OAT1/Oat1, and the subsequent luminal efflux into urine mainly by passive diffusion. Dosage adjustment appears to be an efficient and safe way to manipulate systemic exposure to tanshinol. Tanshinol shows low propensity to cause renal transporter-mediated herb-drug interactions.


Subject(s)
Caffeic Acids/metabolism , Herb-Drug Interactions/physiology , Kidney Tubules/metabolism , Animals , Biological Transport/drug effects , Biological Transport/physiology , Cell Line , Food , HEK293 Cells , Humans , Kidney Tubules/drug effects , Male , Membrane Transport Proteins/metabolism , Organic Anion Transport Protein 1/metabolism , Probenecid/pharmacology , Rats , Rats, Sprague-Dawley
15.
Drug Metab Dispos ; 43(5): 679-90, 2015 May.
Article in English | MEDLINE | ID: mdl-25670806

ABSTRACT

DanHong injection is a Danshen (Salvia miltiorrhiza roots)-based injectable solution for treatment of coronary artery disease and ischemic stroke. Danshen catechols are believed to be responsible for the injection's therapeutic effects. This study aimed to characterize systemic exposure to and elimination of Danshen catechols in human subjects, rats, and dogs receiving intravenous DanHong injection. A total of 28 catechols were detected, with content levels of 0.002-7.066 mM in the injection, and the major compounds included tanshinol, protocatechuic aldehyde, salvianolic acid B, rosmarinic acid, salvianolic acids A and D, and lithospermic acid with their daily doses ≥10 µmol/subject. After dosing, tanshinol, salvianolic acid D, and lithospermic acid exhibited considerable exposure in human subjects and rats. However, only tanshinol had considerable exposure in dogs. The considerable exposure to tanshinol was due to its having the highest dose, whereas that to salvianolic acid D and lithospermic acid was due to their relatively long elimination half-lives in the human subjects and rats. Protocatechuic aldehyde and rosmarinic acid circulated in the bloodstream predominantly as metabolites; salvianolic acids A and B exhibited low plasma levels with their human plasma metabolites little or not detected. Tanshinol and salvianolic acid D were eliminated mainly via renal excretion. Elimination of other catechols involved hepatobiliary and/or renal excretion of their metabolites. Methylation was found to be the primary metabolism for most Danshen catechols and showed intercompound and interspecies differences in rate and degree in vitro. The information gained here is relevant to pharmacological and toxicological research on DanHong injection.


Subject(s)
Catechols/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Salvia miltiorrhiza/chemistry , Animals , Dogs , Humans , Injections, Intravenous , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL