Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Toxicol Lett ; 369: 1-11, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35963426

ABSTRACT

Isoflavones are phytoestrogens with recognized estrogenic activity but may also affect testosterone, corticosterone and thyroid hormone levels in experimental models. However, the molecular mechanisms involved in these alterations are still unclear. Isoflavones are present in soy-based infant formula, in breast milk after the consumption of soy by the mother and are widely used for the preparation of beverages consumed by toddlers and teenagers. In this sense, we proposed to investigate the effects of soy isoflavone exposure during the prepubertal period, a recognized window of sensitivity for endocrine disruption, over the hypothalamic-pituitary-testicular (HPT) axis. For this, 42 3-week-old male Wistar rats were exposed to 0.5, 5 or 50 mg of soy isoflavones/kg from postnatal day (PND) 23 to PND60. We evaluated body growth, age at puberty, serum concentrations of LH, FSH, testosterone and estradiol, and the expression of the transcripts (mRNA) of genes encoding key genes controlling the hypothalamic-pituitary-testicular (HPT) axis. In the hypothalamus, we observed an increase in Esr1 mRNA expression (0.5 and 5 mg). In the pituitary, we observed an increase in Gnrhr mRNA expression (50 mg), a reduction in Lhb mRNA expression (0.5 mg), and a reduction in Ar mRNA expression. In the testis, we observed an increase in Lhcgr mRNA expression (50 mg) and a reduction in Star mRNA expression (0.5 and 5 mg). The serum levels of LH (5 and 50 mg) and FSH (0.5 mg) were increased, while testosterone and estradiol were reduced. Puberty was delayed in all groups. Taken together, these results suggest that prepubertal consumption of relevant levels of soy isoflavones disrupts the HPT axis, causing hypergonadotropic hypogonadism and altered expression levels of key genes regulating the axis.


Subject(s)
Hypogonadism , Isoflavones , Animals , Corticosterone , Estradiol/metabolism , Follicle Stimulating Hormone , Gonadotropins, Pituitary/metabolism , Humans , Hypogonadism/metabolism , Hypothalamus/metabolism , Isoflavones/pharmacology , Male , Phytoestrogens/metabolism , Phytoestrogens/toxicity , Puberty , RNA, Messenger/metabolism , Rats , Rats, Wistar , Testosterone
2.
Chem Res Toxicol ; 33(10): 2605-2622, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32972137

ABSTRACT

Silver nanoparticles (AgNPs) have potent antimicrobial activity and, for this reason, are incorporated into a variety of products, raising concern about their potential risks and impacts on human health and the environment. The developmental period is highly dependent on thyroid hormones (THs), and puberty is a sensitive period, where changes in the hormonal environment may have permanent effects. We evaluated the hypothalamic-pituitary (HP)-thyroid axis after exposure to low doses of AgNPs using a validated protocol to assess pubertal development and thyroid function in immature male rats. For stimulatory events of the HP-thyroid axis, we observed an increase in the expression of Trh mRNA and serum triiodothyronine. Negative feedback reduced the hypothalamic expression of Dio2 mRNA and increased the expression of Thra1, Thra2, and Thrb2 mRNAs. In the pituitary, there was a reduced expression of Mct-8 mRNA and Dio2 mRNA. For peripheral T3-target tissues, a reduced expression of Mct-8 mRNA was observed in the heart and liver. An increased expression of Dio3 mRNA was observed in the heart and liver, and an increased expression of Thrb2 mRNA was observed in the liver. The quantitative proteomic profile of the thyroid gland indicated a reduction in cytoskeletal proteins (Cap1, Cav1, Lasp1, Marcks, and Tpm4; 1.875 µg AgNP/kg) and a reduction in the profile of chaperones (Hsp90aa1, Hsp90ab1, Hspa8, Hspa9, P4hb) and proteins that participate in the N-glycosylation process (Ddost, Rpn1 and Rpn2) (15 µg AgNP/kg). Exposure to low doses of AgNPs during the window of puberty development affects the regulation of the HP-thyroid axis with further consequences in thyroid gland physiology.


Subject(s)
Hypothalamus/drug effects , Metal Nanoparticles/chemistry , Pituitary Gland/drug effects , Proteomics , Silver/pharmacology , Thyroid Gland/drug effects , Animals , Gene Expression , Male , Rats , Rats, Wistar , Silver/chemistry , Thyrotropin/blood , Triiodothyronine/blood
SELECTION OF CITATIONS
SEARCH DETAIL