Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Int J Radiat Biol ; 100(3): 399-410, 2024.
Article in English | MEDLINE | ID: mdl-37930055

ABSTRACT

PURPOSE: Assessment of absorbed doses on organs and tissues of miners during radon exposure in the Schneeberg mines in the sixteenth century and calculation of the probability of occurrence of radiation-induced lung cancer and lung fibrosis, considering the life expectancy characteristic and the absence of smoking. MATERIALS AND METHODS: The expected radon concentration at the Schneeberg mines has been estimated using published data. Modeling of the accumulation of radon in the working tunnels of mine workings was carried out using the RESRAD-Build 4.0, based on the radium concentration in soil and geometric parameters of the mining tunnel from the engravings in Agricola's book. The dynamics of radionuclides in the human body were performed using the WinAct software in accordance with data from ICRP Publications 130 and 137. The values of absorbed doses on the tissues of the respiratory tract were obtained using the IDAC 2.1 program. Several models based on the epidemiology of uranium miners have been used to calculate radiation risks from radon exposure. The probability of male survival at birth and the age-specific frequency of spontaneous lung cancer not associated with radiation for miners of the sixteenth century (nonsmoking men aged 20-40 years) were estimated to properly calculate the radiation risks. RESULTS: The expected radon concentration in the Schneeberg mines was assessed in the range of 75-100 kBq m-3. The average value of the equilibrium factor was estimated as 0.49 ± 0.03. The annual exposure of miners to radon decay products was assessed as 125-165 WLM year-1. The annual values of absorbed doses to different sections of the respiratory tract were calculated, the maximum absorbed doses of α-radiation are formed on the bronchial and bronchiolar regions of the lungs (2.23 Gy year-1). The deterministic effects as radiation fibrosis of the lungs with 10 years of experience in the mines of Schneeberg have a probability of occurrence from 60 to 100%. All the models used for radiation risk assessments showed that the lifetime risk of developing lung cancer for nonsmoking Schneeberg miners is many times lower than the risk of developing deterministic radiation effects. In contrast, for the smoking cohort of miners in the nineteenth century lung cancer become the dominant cause of death. CONCLUSIONS: The deterministic radiation effects of Schneeberg miners in sixteenth century, exposed to extremely high levels of radon, such as radiation pneumosclerosis or pulmonary fibrosis, are more likely than the development of radiation-induced lung cancer.


Subject(s)
Lung Neoplasms , Neoplasms, Radiation-Induced , Occupational Diseases , Occupational Exposure , Radon , Uranium , Infant, Newborn , Humans , Male , Lung Neoplasms/epidemiology , Radiation Fibrosis Syndrome , Radon/adverse effects , Lung , Mining , Neoplasms, Radiation-Induced/epidemiology , Occupational Exposure/adverse effects , Uranium/adverse effects , Occupational Diseases/etiology
2.
J Environ Manage ; 294: 113011, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34116301

ABSTRACT

The protection of the urban environment from radioactive wastes (including technologically enhanced natural radionuclides) and potentially harmful elements have recently become very critical. Thus, the present study aimed to assess the radioactive levels in low-volume samples of dust and fine sand fractions of the urban surface deposited sediments (USDS) collected in three Russian cities. The detection was conducted via CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used to detect gross alpha activity concentrations. A statistically significant difference was observed between the average gross alpha activity concentrations in the dust fraction and the fine sand fraction in each city. The obtained results also illustrate the gross alpha activity concentration in the dust fraction is higher than in the fine sand fraction. This is consistent with the results of the chemical and mineralogical analysis. The dust fraction size has a higher gross alpha activity concentration than the fine sand fraction due to the natural partitioning of the main minerals constituting USDS with trace uranium and thorium content (feldspar, plagioclase, amphibole and others) and negligible uranium and thorium content (quartz). In some cases, USDS radioactivity is associated with monazite and zircon. A good correlation (0.58) was found between the gross alpha activity concentration and the effective content of uranium and thorium. Finally, an assessment of the gross alpha activity concentrations in the USDS size fractions was considered an essential indicator of environmental processes that are significant in terms of their impact on human health.


Subject(s)
Thorium , Uranium , Cities , Dust/analysis , Humans , Russia , Thorium/analysis , Uranium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL