Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Funct ; 13(19): 9720-9733, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36106964

ABSTRACT

Arid-land plants from the Cactaceae family are endemic to the Americas and cultivated worldwide. Cactaceous plants and their fruits contain phenolic compounds, betalains, vitamins, carotenoids, minerals, and soluble fiber. Edible cactaceous matrices can be considered functional foods since their consumption may confer health benefits. These plants could be a source of novel bioactive compounds relevant to the area of phytomedicine. However, consumption of high concentrations of active molecules is not necessarily correlated to beneficial physiological effects because phytochemicals must be released from the food matrices under physiological conditions, resist digestion-associated chemical transformations, and remain in their active state in systemic circulation until the target tissues are reached. Notably, although digestion may either increase or decrease the bioactive phytochemicals' activity and stability, non-absorbed compounds may also be relevant for human health. Additionally, food matrices' type and composition and their technological processing operations may influence the compounds' release, stability, and accessibility. Thus, this review provides insights on the feasibility of using Cactaceae plants as sources of functional compounds. It is focused on compounds' bioactivity, bioaccessibility, and overall bioavailability after their metabolic transformation. Also, it addresses the influence of food processing on bioactive compounds. Many Cactaceae species are unexplored, and our understanding of how they confer health benefits is limited. To better understand the physiological relevance, nutraceutical potential, and therapeutic feasibility of cactaceous bioactive phytochemicals, future research should focus on the metabolic stability and safety of these compounds, as well as their assimilation mechanisms (absorption, distribution, and metabolic fate).


Subject(s)
Cactaceae , Betalains , Cactaceae/chemistry , Carotenoids , Humans , Minerals , Phytochemicals/chemistry , Vitamins
2.
Nutrients ; 10(7)2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30011888

ABSTRACT

Most food allergy cases are associated with a limited group of allergens. This could be attributed to an increased ability of some foods to sensitize and trigger allergic reactions. However, there are no validated animal models to evaluate the sensitizing or allergenic potentials of proteins. Our aim was to evaluate three protocols of adjuvant-free intraperitoneal sensitization that differ in the time points for sample collection (days 14, 28 and 35 from beginning of the sensitization) and also in the number of immunizations (2, 5 and 3, respectively). Ovalbumin (OVA; 0.05 mg), cow milk proteins (CMP; 0.025, 0.05 and 0.25 mg), and potato acid phosphatase (PAP; low allergenic protein; 250.0 mg) were administered intraperitoneally (ip) to BALB/c mice (n = 4⁻6) and the protein-specific IgE and IgG antibody responses were evaluated using ELISA. Additional serum protein-specific IgE antibodies evaluations were carried out after IgG depletion. Anti-OVA IgE antibodies were detected in mice from all three protocols. The responses were higher in the group of mice that underwent the 28-day protocol than in those that underwent the 14- or 35-day protocols (p < 0.01 and p < 0.05, respectively). Anti-CMP IgE antibodies were detected in both the 14- and 28-day protocols, but the response was higher in the group that underwent the 28-day protocol (p < 0.001). The anti-CMP IgE antibody response detection was improved after serum IgG depletion (p < 0.001). Anti-PAP IgE antibodies were not detected. Mice with undetectable serum levels of protein-specific IgE triggered anti-OVA, -CMP, and -PAP IgG responses. An adjuvant-free 28-day protocol with five ip immunizations seems appropriate for evaluation of the inherent sensitizing or allergenic capacity of the studied proteins. Reproducible results were obtained utilizing the BALB/c mouse strain. Inter-laboratory studies including a larger number of proteins should be carried out to validate this model.


Subject(s)
Acid Phosphatase/immunology , Food Hypersensitivity/immunology , Milk Hypersensitivity/immunology , Milk Proteins/immunology , Ovalbumin/immunology , Solanum tuberosum/immunology , Acid Phosphatase/administration & dosage , Animals , Enzyme-Linked Immunosorbent Assay , Female , Food Hypersensitivity/blood , Immunoglobulin E/blood , Immunoglobulin G/blood , Injections, Intraperitoneal , Mice, Inbred BALB C , Milk Hypersensitivity/blood , Milk Proteins/administration & dosage , Ovalbumin/administration & dosage , Plant Roots/immunology , Solanum tuberosum/enzymology , Time Factors
3.
Molecules ; 22(11)2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29120394

ABSTRACT

Alcalase is the enzyme of choice to release antihypertensive peptides from amaranth proteins, but the hydrolysis conditions have not been optimized yet. Furthermore, in vivo assays are needed to confirm such a hypotensive effect. Our aim was to optimize the hydrolysis of amaranth protein with alcalase and to test in vivo the hypotensive effect of the hydrolysates. A response surface analysis was carried out to optimize the hydrolysis reaction. The response variable was the Angiotensin Converting Enzyme (ACE-I) inhibition. The hydrolysis degree was determined (free alpha-amino groups measurement). The optimized hydrolysate bioavailability was assessed in the sera of mice and the hypotensive effect was assessed in spontaneously hypertensive rats. Control groups were administered captopril or water. The optimized hydrolysis conditions were: pH = 7.01, temperature = 52 °C, enzyme concentration 0.04 mU/mg, and time = 6.16 h. The optimized hydrolysate showed a 93.5% of ACE-I inhibition and a hydrolysis degree of 74.77%. After supplementation, the hydrolysate was bioavailable in mice from 5 to 60 min, and the hypotensive effect started at 4 h in spontaneously hypertensive rats (p < 0.05 vs. water group). This effect was similar to the captopril hypotensive effect for the next 3 h (p > 0.05). The use of amaranth-optimized hydrolysates as hypotensive supplements or ingredient for functional foods seems feasible.


Subject(s)
Amaranthus/chemistry , Antihypertensive Agents/pharmacology , Hypertension/physiopathology , Plant Extracts/pharmacology , Protein Hydrolysates/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacokinetics , Biological Availability , Blood Pressure/drug effects , Female , Hydrolysis , Hypertension/drug therapy , Peptides/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Protein Hydrolysates/administration & dosage , Protein Hydrolysates/pharmacokinetics , Rats , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL