Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Appl Mater Interfaces ; 15(29): 34378-34396, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37404000

ABSTRACT

Bone regeneration is complex and involves multiple cells and systems, with macrophage-mediated immune regulation being critical for the development and regulation of inflammation, angiogenesis, and osteogenesis. Biomaterials with modified physical and chemical properties (e.g., modified wettability and morphology) effectively regulate macrophage polarization. This study proposes a novel approach to macrophage-polarization induction and -metabolism regulation through selenium (Se) doping. We synthesized Se-doped mesoporous bioactive glass (Se-MBG) and demonstrated its macrophage-polarization regulation toward M2 and its enhancement of the macrophage oxidative phosphorylation metabolism. The underlying mechanism is the effective scavenging of excessive intracellular reactive oxygen species (ROS) by the Se-MBG extracts through the promotion of peroxide-scavenging enzyme glutathione peroxidase 4 expression in the macrophages; this, in turn, improves the mitochondrial function. Printed Se-MBG scaffolds were implanted into rats with critical-sized skull defects to evaluate their immunomodulatory and bone regeneration capacity in vivo. The Se-MBG scaffolds demonstrated excellent immunomodulatory function and robust bone regeneration capacity. Macrophage depletion with clodronate liposomes impaired the Se-MBG-scaffold bone regeneration effect. Se-mediated immunomodulation, which targets ROS scavenging to regulate macrophage metabolic profiles and mitochondrial function, is a promising concept for future effective biomaterials for bone regeneration and immunomodulation.


Subject(s)
Selenium , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , Selenium/pharmacology , Reactive Oxygen Species/pharmacology , Bone Regeneration , Biocompatible Materials/pharmacology , Osteogenesis , Macrophages , Glass/chemistry , Porosity
2.
Chem Biol Interact ; 371: 110344, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36623717

ABSTRACT

Angiogenesis is a biological process in which resting endothelial cells start proliferating, migrating and forming new blood vessels. Angiogenesis is particularly important in the repair of bone tissue defects. Naringin (NG) is the main active monomeric component of traditional Chinese medicine, which has various biological activities, such as anti-osteoporosis, anti-inflammatory, blood activation and microcirculation improvement. At present, the mechanism of naringin in the process of angiogenesis is not clear. PIWI protein-interacting RNA (piRNA) is a small noncoding RNA (sncRNA) that has the functions of regulating protein synthesis, regulating the structure of chromatin and the genome, stabilizing mRNA and others. Several studies have demonstrated that piRNAs can mediate the angiogenesis process. Whether naringin can interfere with the process of angiogenesis by regulating piRNAs and related target genes deserves further exploration. Thus, the purpose of this study was to validate the potential angiogenic and bone regeneration properties and related mechanisms of naringin both in vivo and in vitro.


Subject(s)
Flavanones , Piwi-Interacting RNA , RNA, Small Interfering/metabolism , Endothelial Cells/metabolism , Flavanones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL