Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Molecules ; 29(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38398646

ABSTRACT

Non-communicable diseases (NCDs) are described as a collection of chronic diseases that do not typically develop from an acute infection, have long-term health effects, and frequently require ongoing care and therapy. These diseases include heart disease, stroke, cancer, chronic lung disease, neurological diseases, osteoporosis, mental health disorders, etc. Known synthetic drugs for the treatment or prevention of NCDs become increasingly dangerous over time and pose high risks due to side effects such as hallucination, heart attack, liver failure, etc. As a result, scientists have had to look for other alternatives that are natural products and that are known to be less detrimental and contain useful bioactive compounds. The increasing understanding of the biological and pharmacological significance of carbohydrates has helped to raise awareness of their importance in living systems and medicine, given they play numerous biological roles. For example, pectin has been identified as a class of secondary metabolites found in medicinal plants that may play a significant role in the treatment and management of a variety of NCDs. Pectin is mainly made of homogalacturonan, which is a linear polymer composed primarily of D-galacturonic acid units (at least 65%) linked in a chain by α-(1,4)-glycosidic linkages. There are also modified pectins or derivatives that improve pectin's bioavailability. Pectin is found in the cell walls of higher plants (pteridophytes, angiosperms, and gymnosperms), particularly in the middle lamella of the plant material. Citrus pectin is used in various industries. This article compiles information that has been available for years about the therapeutic importance of pectin in chronic diseases, different modes of pectin extraction, the chemistry of pectin, and the potency of pectin and its derivatives.


Subject(s)
Ferns , Magnoliopsida , Humans , Pectins/chemistry , Magnoliopsida/metabolism , Glycosides , Chronic Disease
2.
Molecules ; 28(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37513168

ABSTRACT

Pelargonium species are native to South Africa, and they have a long history in medicinal use. This study aimed to extract essential oils from different parts of P. peltatum, determine the chemical composition of the essential oils, and assess the essential oils' biological potential as analgesic and anti-inflammatory agents. The essential oils were obtained by hydro-distilling different parts of P. peltatum, and the essential profile was determined by GC-FID and GC-MS. The analgesic activity of the essential oil was determined by using a tail immersion in hot water method in rats, whereas the anti-inflammatory activity of the essential oils was assessed according to right hind paw oedema induced by egg albumin; the three doses selected for each experiment were 100, 200, and 400 mg/kg. According to the GC-FID and GC-MS analysis, camphene (3.6-33.4%), α-terpineol (4.8-19.1%), α-thujone (1.5-15.6%), piperitone (0.9-12.2%), linalool (1.6-11.7%), myrcene (5.2-10.7%), germacrene D (3.7-10.4%), ß-caryophyllene (1.2-9.5%), ß-cadinene (3.4-6.7%), and ß-bourbonene (4.2-6.2%) were some of the major compounds identified in the oil. P. peltatum essential oils demonstrated analgesic activity by increasing pain latency in hot water; furthermore, in an inflammation test, the essential oil reduced the egg-albumin-induced paw oedema in both the first and second phases. Therefore, the current findings suggest that P. peltatum essential oils have analgesic and anti-inflammatory properties.


Subject(s)
Oils, Volatile , Pelargonium , Rats , Animals , Pelargonium/chemistry , South Africa , Plant Oils/chemistry , Oils, Volatile/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Edema/chemically induced , Edema/drug therapy
3.
Molecules ; 28(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37110668

ABSTRACT

Cyperus sexangularis (CS) is a plant in the sedges family (Cyperaceae) that grows abundantly in swampy areas. The leaf sheath of plants in the Cyperus genus are mostly used domestically for mat making, while they are implicated for skin treatment in traditional medicine. The plant was investigated for its phytochemical contents as well as its antioxidant, anti-inflammatory and anti-elastase properties. The n-hexane and dichloromethane leaf extracts were chromatographed on a silica gel column to afford compounds 1-6. The compounds were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. The inhibitory effect of each compound against 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and ferric ion radicals were determined by standard in vitro antioxidant methods. The in vitro anti-inflammatory response was measured using egg albumin denaturation (EAD) assay, while the anti-elastase activity of each compound in human keratinocyte (HaCaT) cells was also monitored. The compounds were characterized as three steroidal derivatives, stigmasterol (1), 17-(1-methyl-allyl)-hexadecahydro-cyclopenta[a]phenanthrene (2) and ß-sitosterol (3), dodecanoic acid (4) and two fatty acid esters, ethyl nonadecanoate (5) and ethyl stearate (6). Stigmasterol (1) exhibited the best biological properties, with IC50 of 38.18 ± 2.30 µg/mL against DPPH, 68.56 ± 4.03 µg/mL against NO and 303.58 ± 10.33 µAAE/mg against Fe3+. At 6.25 µg/mL, stigmasterol inhibited EAD by 50%. This activity was lower when compared to diclofenac (standard), which demonstrated 75% inhibition of the protein at the same concentration. Compounds 1, 3, 4 and 5 showed comparable anti-elastase activity with an IC50 ≥ 50 µg/mL, whereas the activity of ursolic acid (standard) was double fold with an IC50 of 24.80 ± 2.60 µg/mL when compared to each of the compounds. In conclusion, this study has identified three steroids (1-3), one fatty acid (4), and two fatty acid esters (5 and 6) in C. sexangularis leaf for the first time. The compounds showed considerable antioxidant, anti-inflammatory and anti-elastase properties. Thus, the findings may serve as a justification for the folkloric use of the plant as a local skin ingredient. It may also serve to validate the biological role of steroids and fatty acid compounds in cosmeceutical formulations.


Subject(s)
Antioxidants , Cyperus , Humans , Antioxidants/pharmacology , Stigmasterol , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Nitric Oxide , Fatty Acids
4.
Molecules ; 28(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049851

ABSTRACT

There are high mortality and morbidity rates from poisonous snakebites globally. Many medicinal plants are locally used for snakebite treatment in Uganda. This study aimed to determine the in vitro anti-venom activities of aqueous extract and oils of Toona ciliata against Naja melanoleuca venom. A mixture of venom and extract was administered intramuscularly in rats. Anticoagulant, antiphospholipase A2 (PLA2) inhibition assay, and gel electrophoresis for anti-venom activities of oils were done. The chemical constituents of the oils of ciliata were identified using Gas chromatography-tandem mass spectroscopy (GC-MS/MS). The LD50 of the venom was 0.168 ± 0.21 µg/g. The venom and aqueous extract mixture (1.25 µg/g and 3.5 mg/g) did not cause any rat mortality, while the control with venom only (1.25 µg/g) caused death in 1 h. The aqueous extract of T. ciliata inhibited the anticoagulation activity of N. melanoleuca venom from 18.58 min. to 4.83 min and reduced the hemolytic halo diameter from 24 to 22 mm. SDS-PAGE gel electrophoresis showed that oils completely cleared venom proteins. GC-MS/MS analysis showed that the oils had sesquiterpene hydrocarbons (60%) in the volatile oil (VO) and oxygenated sesquiterpenes (48.89%) in the non-volatile oils (NVO). Some major compounds reported for the first time in T. ciliata NVOs were: Rutamarin (52.55%), ß-Himachalol (9.53%), Girinimbine (6.68%) and Oprea1 (6.24%). Most compounds in the VO were reported for the first time in T. ciliata, including the major ones Santalene (8.55%) and Himachal-7-ol (6.69%). The result showed that aqueous extract and oils of T. ciliata have anti-venom/procoagulant activities and completely neutralized the venom. We recommend a study on isolation and testing the pure compounds against the same venom.


Subject(s)
Antivenins , Oils, Volatile , Rats , Animals , Antivenins/pharmacology , Elapid Venoms/analysis , Toona , Tandem Mass Spectrometry , Oils, Volatile/pharmacology , Water
5.
Plants (Basel) ; 11(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35956544

ABSTRACT

A decoction of Dalbergiella welwitschii leaves has been used ethnomedicinally for the treatment of mental illness and inflammatory diseases amongst other diseases. In this study, the leaf methanol extract of D. welwitschii and its partition fractions: n-hexane, ethyl acetate and aqueous, were tested and evaluated for their polyphenolic contents, free radical scavenging and cholinesterase inhibitory activities. The total phenolic (TPC), flavonoid (TFC) and proanthocyanidin (TPA) contents were determined using standard colorimetric methods. The anti-radical activity of the extracts against the 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion and nitric oxide (NO) radicals as well as their effects on lipid peroxidation were monitored spectrophotometrically. The cholinesterase enzyme (AChE and BuChE) inhibitions by the extracts were determined by a modified method of Ellman. The result showed a concentration-dependent increase in inhibition of the free radicals and the cholinesterase enzymes, except for that of lipid peroxidation. The ethyl acetate (EtOAc) fraction exhibited the highest polyphenolic contents among the fractions, with a TPC of 1.08 mgGAE/g, TFC of 0.38 mgQuE/g and TPA of 0.21 mgGAE/g. It also demonstrated the highest free radical scavenging activities with 72.63% and 65.43% inhibitions of DPPH and NO, respectively. The EtOAc fraction inhibited AChE and BuChE enzymes with IC50 values of 0.94 and 8.49 mg/mL, respectively. Our findings show that the plant may have polyphenol contents, in particular in the methanol extract and EtOAc fraction. These extracts showed considerable free radical scavenging and cholinesterase inhibitory properties. Thus, the observed bioactivities may serve as a justification for its folkloric use as a remedy for mental illness. The study also provides relevant information that could help in the search for lead cholinesterase inhibitors from medicinal plants that can be exploited against neurodegenerative disorders.

6.
Biomolecules ; 12(5)2022 04 24.
Article in English | MEDLINE | ID: mdl-35625555

ABSTRACT

The vastness of metal-based nanoparticles has continued to arouse much research interest, which has led to the extensive search and discovery of new materials with varying compositions, synthetic methods, and applications. Depending on applications, many synthetic methods have been used to prepare these materials, which have found applications in different areas, including biology. However, the prominent nature of the associated toxicity and environmental concerns involved in most of these conventional methods have limited their continuous usage due to the desire for more clean, reliable, eco-friendly, and biologically appropriate approaches. Plant-mediated synthetic approaches for metal nanoparticles have emerged to circumvent the often-associated disadvantages with the conventional synthetic routes, using bioresources that act as a scaffold by effectively reducing and stabilizing these materials, whilst making them biocompatible for biological cells. This capacity by plants to intrinsically utilize their organic processes to reorganize inorganic metal ions into nanoparticles has thus led to extensive studies into this area of biochemical synthesis and analysis. In this review, we examined the use of several plant extracts as a mediating agent for the synthesis of different metal-based nanoparticles (MNPs). Furthermore, the associated biological properties, which have been suggested to emanate from the influence of the diverse metabolites found in these plants, were also reviewed.


Subject(s)
Green Chemistry Technology , Metal Nanoparticles , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Metals/metabolism , Plant Extracts/chemistry , Plants/metabolism
7.
Molecules ; 27(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630680

ABSTRACT

Biogenic metal oxide nanoparticles (NPs) have emerged as a useful tool in biology due to their biocompatibility properties with most biological systems. In this study, we report the synthesis of copper oxide (CuO), zinc oxide (ZnO) nanoparticles (NPs), and their nanocomposite (CuO-ZnO) prepared using the phytochemical extracts from the leaves of Dovyalis caffra (kei apple). The physicochemical properties of these nanomaterials were established using some characterization techniques including X-ray diffraction analysis (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The XRD result confirmed the presence of a monoclinic CuO (Tenorite), and a hexagonal ZnO (Zincite) nanoparticles phase, which were both confirmed in the CuO-ZnO composite. The electron microscopy of the CuO-ZnO, CuO, and ZnO NPs showed a mixture of nano-scale sizes and spherical/short-rod morphologies, with some agglomeration. In the constituent's analysis (EDX), no unwanted peak was found, which showed the absence of impurities. Antioxidant properties of the nanoparticles was studied, which confirmed that CuO-ZnO nanocomposite exhibited better scavenging potential than the individual metal oxide nanoparticles (CuO, and ZnO), and ascorbic acid with respect to their minimum inhibitory concentration (IC50) values. Similarly, the in vitro anticancer studies using MCF7 breast cancer cell lines indicated a concentration-dependent profile with the CuO-ZnO nanocomposite having the best activity over the respective metal oxides, but slightly lower than the standard 5-Fluorouracil drug.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Copper , Green Chemistry Technology/methods , Humans , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
8.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268790

ABSTRACT

Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during child labor, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of C. sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of C. sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.


Subject(s)
Cannabis
9.
Molecules ; 26(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34770937

ABSTRACT

Globimetula braunii is a hemi-parasitic plant used in African ethnomedicine for the management of microbial infections, rheumatic pain and tumors amongst others. We report the isolation and characterization of eight compounds with their antioxidant and antimicrobial activities. The air-dried powdered leaf was macerated in EtOH/H20 (4:1). The extract was solvent-partitioned into n-hexane, EtOAc, n-BuOH and aqueous fractions. The fractions were screened for their antioxidant properties, using DPPH, FRAP, TAC and FIC assays. Antimicrobial analysis was performed using the micro-broth dilution method. The active EtOAc fraction was purified for its putative compounds on a repeated silica gel column chromatography monitored with TLC-bioautography. The isolated compounds were characterized using spectroscopic methods of UV, FT-IR, NMR and MS. Eight compounds (1-8) were isolated and characterized as 13,27-cycloursane (1), phyllanthone (2), globraunone (3), three phenolics: methyl 3,5-dihydroxy-4-methoxybenzoate (4), methyl 3-methyl-4-hydroxybenzoate (5) and guaiacol (6), as well as two phenol derivatives: 4-formaldehyde phenone (7) and 6-methoxy-2H-inden-5-ol (8). The study identified 4 and 6 as natural antioxidant compounds with potential as antimicrobial agents.


Subject(s)
Loranthaceae/chemistry , Phenols/chemistry , Plant Leaves/chemistry , Triterpenes/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chemical Fractionation , Molecular Structure , Phenols/isolation & purification , Phenols/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Spectrum Analysis , Triterpenes/isolation & purification , Triterpenes/pharmacology
10.
Molecules ; 26(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205060

ABSTRACT

The medicinal potential and volatile composition of different parts of three cultivars of grapefruit (Citrus paradisi) were evaluated for their toxicity and anti-inflammatory activities. Fresh leaf and fruit peel were separately isolated by hydrodistillation for 4 h. The essential oils were subjected to GC/GC-MS analysis for chemical profile. Toxicity of the essential oils in mice were evaluated using Lorke's method, while an anti-inflammatory assay was performed in a rat model using egg albumin-induced oedema. The oils obtained were light yellow in colour, and odour varied from strong citrus smell to mild. Percentage yield of fresh peel oil (0.34-0.57%) was greater than the fresh leaf oil yield (0.21-0.34%). D-limonene (86.70-89.90%) was the major compound identified in the leaf oil, while ß-phellandrene (90.00-91.01%) dominated the peel oil. At a dosage level of 5000 mg/kg, none of the oils showed mortality in mice. An anti-inflammatory bioassay revealed that all the oils caused a significant (p < 0.05-0.01) reduction in oedema size when compared to the negative control group throughout the 5 h post induction assessment period. The study reveals that the oils are non-toxic and demonstrate significant anti-inflammatory activity. Our findings suggest that the leaf and peel oils obtained from waste parts of grapefruit plants can be useful as flavouring agents, as well as anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Citrus paradisi/chemistry , Edema/drug therapy , Oils, Volatile/administration & dosage , Ovalbumin/adverse effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cyclohexane Monoterpenes/analysis , Disease Models, Animal , Edema/chemically induced , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Limonene/analysis , Mice , Molecular Structure , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Plant Oils/analysis , Plant Oils/chemistry , Rats , South Africa
11.
Molecules ; 24(15)2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31362424

ABSTRACT

Non-communicable diseases (NCDs) such as cancer, diabetes, and chronic respiratory and cardiovascular diseases continue to be threatening and deadly to human kind. Resistance to and side effects of known drugs for treatment further increase the threat, while at the same time leaving scientists to search for alternative sources from nature, especially from plants. Pentacyclic triterpenoids (PT) from medicinal plants have been identified as one class of secondary metabolites that could play a critical role in the treatment and management of several NCDs. One of such PT is ursolic acid (UA, 3 ß-hydroxy-urs-12-en-28-oic acid), which possesses important biological effects, including anti-inflammatory, anticancer, antidiabetic, antioxidant and antibacterial effects, but its bioavailability and solubility limits its clinical application. Mimusops caffra, Ilex paraguarieni, and Glechoma hederacea, have been reported as major sources of UA. The chemistry of UA has been studied extensively based on the literature, with modifications mostly having been made at positions C-3 (hydroxyl), C12-C13 (double bonds) and C-28 (carboxylic acid), leading to several UA derivatives (esters, amides, oxadiazole quinolone, etc.) with enhanced potency, bioavailability and water solubility. This article comprehensively reviews the information that has become available over the last decade with respect to the sources, chemistry, biological potency and clinical trials of UA and its derivatives as potential therapeutic agents, with a focus on addressing NCDs.


Subject(s)
Triterpenes/chemistry , Triterpenes/pharmacology , Animals , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectrum Analysis , Structure-Activity Relationship , Ursolic Acid
12.
Antioxidants (Basel) ; 8(8)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443195

ABSTRACT

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.

13.
Article in English | MEDLINE | ID: mdl-31054252

ABSTRACT

Background Typha capensis is one of the medicinal plants commonly used to manage male fertility problems. The objective of the present study was to assess its fertility-promoting effects in a rat model of cadmium-induced infertility. Methods A total of 30 male Wister rats were randomly divided into five groups of six animals each. Animals of group I, which served as control, were administered with cadmium chloride (CdCl2; 2.5 mg/kg) and normal saline (2 mL/kg). Group II was served with 0.5 mL normal saline only. Animals of groups III-V were treated with CdCl2 (2.5 mg/kg) plus T. capensis extract at doses of 100, 200, and 400 mg/kg, respectively. Animals were sacrificed under sedation. Testes and epididymal weights and sperm count were determined. Histological assessment of the testes was conducted. Results T. capensis at any dose did not improve (p > 0.05) testicular and epididymal weights compared with those of the CdCl2-exposed control group. Histology revealed moderate necrosis in the same group. T. capensis modestly increased the sperm count by 14%, 31%, and 35%, for groups treated with the extract at doses 100, 200, and 400 mg/kg, respectively, when compared with the CdCl2 control group, although the differences were not significant statistically (p > 0.05). Conclusions Results of our study demonstrated that T. capensis can neither offer protective effects against oxidative stress nor promote fertility in an animal model of cadmium-induced infertility.


Subject(s)
Cadmium Chloride/toxicity , Infertility, Male/prevention & control , Plant Extracts/pharmacology , Protective Agents/pharmacology , Rhizome/chemistry , Typhaceae/chemistry , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Epididymis/drug effects , Epididymis/pathology , Male , Organ Size/drug effects , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Protective Agents/isolation & purification , Rats, Wistar , Sperm Count , Testis/drug effects , Testis/pathology
14.
Mediators Inflamm ; 2016: 8401843, 2016.
Article in English | MEDLINE | ID: mdl-27382191

ABSTRACT

Oleanolic acid is a pentacyclic triterpenoid compound widely found in plants and well known for its medicinal properties. Oleanolic acid (OA) was isolated from the ethyl acetate extract of Syzygium aromaticum flower buds. Semisynthesis afforded both acetate and ester derivatives. The derived compounds were monitored with thin layer chromatography and confirmed with nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), Fourier infrared (FT-IR) spectroscopy, and melting point (Mp). All these compounds were evaluated for their analgesic and anti-inflammatory properties at a dose of 40 mg/kg. Significant analgesic and anti-inflammatory effects were noted for all OA-derived compounds. In the formalin-induced pain test, the derivatives showed better analgesic effects compared to their precursor, whereas, in the tale flick test, oleanolic acid proved to be superior in analgesic effects compared to all its derivatives with the exception of the acetyl derivative. Acute inflammatory tests showed that acetyl derivatives possessed better anti-inflammatory activity compared to the other compounds. In conclusion, semisynthesis of oleanolic acid yielded several derivatives with improved solubility and enhanced analgesic and anti-inflammatory properties.


Subject(s)
Analgesics/chemistry , Anti-Inflammatory Agents/chemistry , Oleanolic Acid/chemistry , Plant Extracts/chemistry , Syzygium/chemistry , Animals , Biological Assay , Female , Flowers/chemistry , Inflammation , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Oleanolic Acid/chemical synthesis , Plant Extracts/chemical synthesis , Rats , Rats, Wistar , Solubility , Spectroscopy, Fourier Transform Infrared , Temperature
15.
Molecules ; 21(6)2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27314316

ABSTRACT

We herein report for the first time the synthesis and analgesic properties of silver nanoparticles (Ag-NPs) using buchu plant extract. The as-synthesised Ag-NPs at different temperatures were characterised by UV-Vis spectroscopy, Fourier transform infra-red spectroscopy (FTIR) and transmission transform microscopy (TEM) to confirm the formation of silver nanoparticles. Phytochemical screening of the ethanolic extract revealed the presence of glycosides, proteins, tannins, alkaloids, flavonoids and saponins. The absorption spectra showed that the synthesis is temperature and time dependent. The TEM analysis showed that the as-synthesised Ag-NPs are polydispersed and spherical in shape with average particle diameter of 19.95 ± 7.76 nm while the FTIR results confirmed the reduction and capping of the as-synthesised Ag-NPs by the phytochemicals present in the ethanolic extract. The analgesic study indicated that the combined effect of the plant extract and Ag-NPs is more effective in pain management than both the aspirin drug and the extract alone.


Subject(s)
Analgesics/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/administration & dosage , Alkaloids/chemistry , Analgesics/administration & dosage , Animals , Flavonoids/chemistry , Glycosides/chemistry , Metal Nanoparticles/administration & dosage , Mice , Plant Extracts/chemistry , Proteins/chemistry , Rutaceae/chemistry , Saponins/chemistry , Silver/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Tannins/chemistry
16.
Molecules ; 20(5): 7438-53, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25915460

ABSTRACT

Cymbopogon genus is a member of the family of Gramineae which are herbs known worldwide for their high essential oil content. They are widely distributed across all continents where they are used for various purposes. The commercial and medicinal uses of the various species of Cymbopogon are well documented. Ethnopharmacology evidence shows that they possess a wide array of properties that justifies their use for pest control, in cosmetics and as anti-inflammation agents. These plants may also hold promise as potent anti-tumor and chemopreventive drugs. The chemo-types from this genus have been used as biomarkers for their identification and classification. Pharmacological applications of Cymbopogon citratus are well exploited, though studies show that other species may also useful pharmaceutically. Hence this literature review intends to discuss these species and explore their potential economic importance.


Subject(s)
Cymbopogon/metabolism , Oils, Volatile/pharmacology , Phytochemicals/pharmacology , Phytotherapy/methods , Plant Extracts/pharmacology , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Chemoprevention/methods , Ethnopharmacology , Pest Control, Biological
17.
J Ethnopharmacol ; 166: 240-9, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25771354

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Piper guineense Schum & Thonn (Piperaceae) is a medicinal plant used in the Southern States of Nigeria to treat fever, mental disorders and febrile convulsions. AIMS OF THE STUDY: This study aims at determining the chemical composition and the central nervous system (CNS) activities of the essential oil obtained from the plant׳s fresh fruits in order to rationalize its folkloric use. MATERIALS AND METHODS: Essential oil of P. guineense (EOPG) obtained by hydrodistillation was analysed by GC/MS. EOPG (50-200mg/kg, i.p.) was evaluated for behavioural, hypothermic, sedative, muscle relaxant, anti-psychotic and anticonvulsant activities using standard procedures. RESULTS AND DISCUSSION: Analysis of the oil reveals 44 compounds of which 30 compounds constituting 84.7% were identified. The oil was characterized by sesquiterpenoids (64.4%) while only four monoterpeneoids (21.3%) were found present in the oil. Major compounds identified were ß-sesquiphellandrene (20.9%), linalool (6.1%), limonene (5.8%), Z-ß-bisabolene (5.4%) and α-pinene (5.3%). The EOPG (50-200mg/kg, i.p.) caused significant (p<0.01) inhibition on rearing {F(4,20)=43}, locomotor {F(4,20)=22} activity and decreased head dips in hole board {F(4,20)=7} indicating CNS depressant effect; decreased rectal temperature {F(4,20)=7-16}, signifying hypothermic activity; decreased ketamine-induced sleep latency {F(4,20)=7.8} and prolonged total sleeping time {F(4,20)=8.8}, indicating sedative effect; reduced muscular tone on the hind-limb grip test {F(4,20)=22}, inclined board {F(4,20)=4-49} and rota rod {F(4,20)=13-106}, implying muscle relaxant activity; induced catalepsy {F(4,20)=47-136}, inhibited apomorphine-induced climbing behaviour {F(4,20)=9} and inhibited apomorphine-induced locomotor {F(4,20)=16}, suggesting anti-psychotic effect; and protected mice against pentylenetetrazole-induced convulsions, indicating anticonvulsant potential. CONCLUSION: The most abundant component of the fresh fruits essential oil of P. guineense was ß-sesquiphellandrene (20.9%); and the oil possesses CNS depressant, hypothermic, sedative, muscle relaxant, antipsychotic and anticonvulsant activities, thus providing scientific basis for its ethnomedicinal applications.


Subject(s)
Central Nervous System/drug effects , Fruit/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Piper/chemistry , Piperaceae/chemistry , Acyclic Monoterpenes , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Bicyclic Monoterpenes , Body Temperature/drug effects , Cyclohexenes/chemistry , Cyclohexenes/pharmacology , Ethnopharmacology/methods , Female , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Limonene , Male , Mice , Monocyclic Sesquiterpenes , Monoterpenes/chemistry , Monoterpenes/pharmacology , Motor Activity/drug effects , Phytotherapy/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sleep/drug effects , Terpenes/chemistry , Terpenes/pharmacology
18.
Nat Prod Res ; 29(12): 1184-8, 2015.
Article in English | MEDLINE | ID: mdl-25422136

ABSTRACT

The volatile oils of the leaves and the stem bark of Acacia mearnsii de Wild obtained by hydro-distillation were analysed by gas chromatography-mass spectrometry. A total of 20, 38, 29 and 38 components accounted for 93.8%, 92.1%, 78.5% and 90.9% of the total oils of the fresh, dry leaves and fresh, dry stem bark, respectively. The major components of the oil were octadecyl alcohol (25.5%) and phytol (10.5%); cis-verbenol (29.5%); phytol (10.1%) and phytol (23.4%) for the fresh leaves, dried leaves, fresh stem, dry stem bark, respectively. Oral administration of essential oils at a dose of 2% showed significant (p < 0.05) anti-inflammatory properties in the albumin-induced test model in rats. Oils from the fresh leaves and dry stems inhibited inflammation beyond 4 h post treatment. The potent anti-inflammatory activity of essential oils of A. mearnsii hereby confirmed its traditional use in treating various inflammatory diseases.


Subject(s)
Acacia/chemistry , Anti-Inflammatory Agents/pharmacology , Oils, Volatile/chemistry , Plant Oils/chemistry , Animals , Bicyclic Monoterpenes , Male , Monoterpenes/chemistry , Oils, Volatile/pharmacology , Phytol/chemistry , Plant Bark/chemistry , Plant Leaves/chemistry , Plant Oils/pharmacology , Plant Stems/chemistry , Rats , Rats, Wistar
19.
Inflammation ; 38(1): 61-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25173889

ABSTRACT

Acetylation and methylation semisynthesis of oleanolic acid (OA) isolated from Syzygium aromaticum L. yielded two compounds: 3-acetoxyoleanolic acid (3-AOA) and 3-acetoxy, 28-methylester oleanolic acid (3-A,28-MOA). Anti-inflammatory properties of these compounds were assessed using the serotonin and fresh egg albumin-induced inflammatory test models in male Wistar rats weighing 250-300 g. Furthermore, erythrocyte membrane-stabilizing property of these compounds was evaluated in the heat- and hypotonicity-induced in vitro hemolysis test models. The two semisynthetic compounds significantly (p < 0.05) inhibited albumin-induced inflammation better than OA and indomethacin from 1-5 h post administration. Both compounds were membrane stabilizing in heat-induced hemolysis test while only 3-AOA showed membrane-stabilizing effects in a hypotonic milieu. Semisynthesis of OA yielded two compounds which had better in vivo anti-inflammatory and in vitro membrane-stabilizing properties.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Membrane/drug effects , Oleanolic Acid/pharmacology , Plant Extracts/pharmacology , Syzygium , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cell Membrane/metabolism , Dose-Response Relationship, Drug , Female , Hemolysis/drug effects , Hemolysis/physiology , Humans , Male , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Rats, Wistar
20.
Nat Prod Commun ; 6(12): 1945-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22312745

ABSTRACT

Thelechitonia trilobata is regarded as a troublesome weed that grows to form a dense blanket over the soil preventing the growth of other crops in farmland. Although the plant is regarded as a notorious, invasive plant, its chemical composition and biological potential have not been reported. The essential oil was isolated from the fresh leaves of T. trilobata using hydrodistillation. alpha-Pinene (21.6%), alpha-phellendrene (21.0%), limonene (12.8%) and germacrene D (7.5%) were the major constituents of the oil. The essential oil was screened against agricultural pests. The anti-tick properties were tested on Ripicephalus e. ervertsi found on sheep, while repellency, fumigation, and contact toxicity tests were carried out with maize weevils. Except for the contact toxicity test, all other bioassays gave positive results.


Subject(s)
Asteraceae/chemistry , Oils, Volatile/analysis , Oils, Volatile/pharmacology , Animals , Bicyclic Monoterpenes , Cyclohexenes/analysis , Fumigation , Insect Repellents/pharmacology , Insecta , Limonene , Monoterpenes/analysis , Plant Leaves/chemistry , Sesquiterpenes, Germacrane/analysis , South Africa , Terpenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL