Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Comput Chem ; 43(2): 132-143, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34729803

ABSTRACT

A method for averaging of NMR parameters by molecular dynamics (MD) has been derived from the method of statistical averaging in MD snapshots, benchmarked and applied to structurally dynamic interpretation of the 31 P NMR shift (δ31P ) in DNA phosphates. The method employs adiabatic dependence of an NMR parameter on selected geometric parameter(s) that is weighted by MD-calculated probability distribution(s) for the geometric parameter(s) (Ad-MD method). The usage of Ad-MD for polymers is computationally convenient when one pre-calculated structural dependence of an NMR parameter is employed for all chemically equivalent units differing only in dynamic behavior. The Ad-MD method is benchmarked against the statistical averaging method for δ31P in the model phosphates featuring distinctively different structures and dynamic behavior. The applicability of Ad-MD is illustrated by calculating 31 P NMR spectra in the Dickerson-Drew DNA dodecamer. δ31P was calculated with the B3LYP/IGLO-III/PCM(water) and the probability distributions for the torsion angles adjacent to the phosphorus atoms in the DNA phosphates were calculated using the OL15 force field.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Density Functional Theory , Nucleic Acid Conformation , Phosphorus
2.
Org Biomol Chem ; 13(15): 4449-58, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25766752

ABSTRACT

Protected N-branched nucleoside phosphonates containing adenine and thymine bases were prepared as the monomers for the introduction of aza-acyclic nucleotide units into modified oligonucleotides. The phosphotriester and phosphoramidite methods were used for the incorporation of modified and natural units, respectively. The solid phase synthesis of a series of nonamers containing one central modified unit was successfully performed in both 3'→5' and 5'→3' directions. Hybridization properties of the prepared oligoribonucleotides and oligodeoxyribonucleotides were evaluated. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a considerable destabilizing effect of the introduced units. We also examined the substrate/inhibitory properties of aza-acyclic nucleoside phosphono-diphosphate derivatives (analogues of nucleoside triphosphates) but neither inhibition of human and bacterial DNA polymerases nor polymerase-mediated incorporation of these triphosphate analogues into short DNA was observed.


Subject(s)
Nucleic Acid Synthesis Inhibitors/chemistry , Nucleosides/chemistry , Oligonucleotides/chemistry , Organophosphonates/chemistry , Adenine/chemical synthesis , Adenine/chemistry , Base Sequence , DNA-Directed DNA Polymerase/metabolism , Humans , Nucleic Acid Synthesis Inhibitors/chemical synthesis , Nucleic Acid Synthesis Inhibitors/pharmacology , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Oligonucleotides/chemical synthesis , Oligonucleotides/pharmacology , Organophosphonates/chemical synthesis , Organophosphonates/pharmacology , Thymine/chemical synthesis , Thymine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL