Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
An Acad Bras Cienc ; 92(4): e20190981, 2020.
Article in English | MEDLINE | ID: mdl-32844989

ABSTRACT

An emerging area in schizophrenia research focuses on the impact of immunomodulatory drugs such as melatonin, which have played important roles in many biological systems and functions, and appears to be promising. The objective was to evaluate the effect of melatonin on behavioral parameters in an animal model of schizophrenia. For this, Wistar rats were divided and used in two different protocols. In the prevention protocol, the animals received 1 or 10mg/kg of melatonin or water for 14 days, and between the 8th and 14th day they received ketamine or saline. In the reversal protocol, the opposite occurred. On the 14th day, the animals underwent behavioral tests: locomotor activity and prepulse inhibition task. In both protocols, the results revealed that ketamine had effects on locomotor activity and prepulse inhibition, confirming the validity of ketamine construction as a good animal model of schizophrenia. However, at least at the doses used, melatonin was not able to reverse/prevent ketamine damage. More studies are necessary to evaluate the role of melatonin as an adjuvant treatment in psychiatric disorders.


Subject(s)
Dietary Supplements , Melatonin , Schizophrenia , Animals , Behavior, Animal , Disease Models, Animal , Melatonin/pharmacology , Rats , Rats, Wistar , Rodentia , Schizophrenia/drug therapy
2.
J Psychiatr Res ; 81: 23-35, 2016 10.
Article in English | MEDLINE | ID: mdl-27367209

ABSTRACT

Recent studies have shown benefits for the supplementation of folic acid in schizophrenic patients. The aim of this study was to evaluate the effects of folic acid addition on adult rats, over a period of 7 or 14 days. It also sets out to verify any potential protective action using an animal model of schizophrenia induced by ketamine, in behavioral and biochemical parameters. This study used two protocols (acute and chronic) for the administration of ketamine at a dose of 25 mg/kg (i.p.). The folic acid was given by oral route in doses of 5, 10 and 50 mg/kg, once daily, for 7 and/or 14 days in order to compare the protective effects of folic acid. Thirty minutes after the last administration of ketamine, the locomotor and social interaction activities were evaluated, and immediately the brain structure were removed for biochemical analysis. In this study, ketamine was administered in a single dose or in doses over the course of 7 days increasing the animal's locomotion. This study showed that the administration of folic acid over 7 days was unable to prevent hyper locomotion. In contrast, folic acid (10 and 50 mg/kg) administrated over a period of 14 days, was able to partially prevent the hyper locomotion. Our data indicates that both acute and chronic administrations of ketamine increased the time to first contact between the animals, while the increased latency for social contact was completely prevented by folic acid (5, 10 and 50 mg/kg). Chronic and acute administrations of ketamine also increased lipid peroxidation and protein carbonylation in brain. Folic acid (10 and 50 mg/kg) supplements showed protective effects on the oxidative damage found in the different brain structures evaluated. All together, the results indicate that nutritional supplementation with folic acid provides promising results in an animal model of schizophrenia induced by ketamine.


Subject(s)
Attention Deficit and Disruptive Behavior Disorders/drug therapy , Attention Deficit and Disruptive Behavior Disorders/etiology , Folic Acid/therapeutic use , Oxidative Stress/drug effects , Schizophrenia/complications , Vitamin B Complex/therapeutic use , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/toxicity , Interpersonal Relations , Ketamine/toxicity , Lipid Metabolism/drug effects , Locomotion/drug effects , Male , Malondialdehyde/metabolism , Protein Carbonylation/drug effects , Rats , Rats, Wistar , Schizophrenia/chemically induced , Superoxide Dismutase/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL