Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Language
Affiliation country
Publication year range
1.
Eur J Neurosci ; 53(2): 571-587, 2021 01.
Article in English | MEDLINE | ID: mdl-32852090

ABSTRACT

Although it is known that nociceptive stimulation in the first postnatal week in rats is useful to model preterm pain, resulting in activation of specific brain areas, as assessed in vivo using manganese-enhanced magnetic resonance imaging (MEMRI), little is known about its long-term effects and sex specificity. Here we aimed to investigate whether inflammatory pain induced in male and female adult rats modify the pattern of brain activation between animals subjected or not to neonatal pain. For this, Complete Freund's adjuvant (CFA) was injected into the left hind paw of rat pups on postnatal day 1 (P1) or P8 to induce inflammatory response. During adulthood, CFA-treated and control animals were injected with CFA 1 hr prior MRI. MEMRI has the ability to enhance the contrast of selective brain structures in response to a specific stimulus, as the pain. MEMRI responses were consistent with activation of nociceptive pathways and these responses were reduced in animals treated with CFA on P1, but increased in animals treated on P8, mainly in the female group. In agreement, P8 female group showed exacerbated responses in the thermal nociceptive test. Using MEMRI, we conclude that the natural ability of adult rats to recognize and react to pain exposition is modified by neonatal painful exposition, mainly among females.


Subject(s)
Manganese , Pain , Animals , Brain/diagnostic imaging , Female , Freund's Adjuvant/toxicity , Inflammation , Magnetic Resonance Imaging , Male , Manganese/toxicity , Rats
2.
Oncotarget ; 9(31): 21731-21743, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29774098

ABSTRACT

BACKGROUND: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. RESULTS: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. CONCLUSIONS: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. METHODS: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

3.
Oncotarget, v. 9, n. 31, p. 21731-21743, 2018
Article in English | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-2520

ABSTRACT

Background: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

4.
PLoS One ; 8(12): e81658, 2013.
Article in English | MEDLINE | ID: mdl-24312569

ABSTRACT

The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.


Subject(s)
Brain-Computer Interfaces , Computer Graphics , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neurofeedback/methods , User-Computer Interface , Adult , Brain Mapping , Emotions , Female , Humans , Male , Middle Aged , Motor Activity , Multivariate Analysis , Support Vector Machine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL